Publications by authors named "S D Tiegs"

Article Synopsis
  • Patchy data on litter decomposition in wetlands limits understanding of carbon storage, prompting a global study involving over 180 wetlands across multiple countries and climates.
  • The study found that freshwater wetlands and tidal marshes had more organic matter remaining after decay, indicating better potential for carbon preservation in these areas.
  • Elevated temperatures positively affect the decomposition of resistant organic matter, with projections suggesting an increase in decay rates by 2050; however, the impact varies by ecosystem type and highlights the need to recognize both local and global factors influencing carbon storage.
View Article and Find Full Text PDF

Rivers and streams contribute to global carbon cycling by decomposing immense quantities of terrestrial plant matter. However, decomposition rates are highly variable and large-scale patterns and drivers of this process remain poorly understood. Using a cellulose-based assay to reflect the primary constituent of plant detritus, we generated a predictive model (81% variance explained) for cellulose decomposition rates across 514 globally distributed streams.

View Article and Find Full Text PDF

Urban streams are exposed to a variety of anthropogenic stressors. Freshwater salinization is a key stressor in these ecosystems that is predicted to be further exacerbated by climate change, which causes simultaneous changes in flow parameters, potentially resulting in non-additive effects on aquatic ecosystems. However, the effects of salinization and flow velocity on urban streams are still poorly understood as multiple-stressor experiments are often conducted at pristine rather than urban sites.

View Article and Find Full Text PDF

Resource exchanges in the form of invertebrate fluxes are a key component of aquatic-terrestrial habitat coupling, but this interface is susceptible to human activities, including the imposition of artificial light at night. To better understand the effects of spectral composition of light-emitting diodes (LEDs)-a technology that is rapidly supplanting other lighting types-on emergent aquatic insects and terrestrial insects, we experimentally added LED fixtures that emit different light spectra to the littoral zone and adjacent riparian habitat of a pond. We installed four replicate LED treatments of different wavelengths (410, 530 and 630 nm), neutral white (4000 k) and a dark control, and sampled invertebrates in both terrestrial and over-water littoral traps.

View Article and Find Full Text PDF

Anthropogenic impacts and global changes have profound implications for natural ecosystems and may lead to their modification, degradation or collapse. Increases in the intensity of single stressors may create abrupt shifts in biotic responses (i.e.

View Article and Find Full Text PDF