Currently, an increasing number of patients are undergoing extensive surgeries to restore the mucosa of the gums in the area of recessions. The use of a connective tissue graft from the palate is the gold standard of such surgical treatment, but complications, especially in cases of extensive defects, have led to the development of approaches using xenogeneic collagen matrices and methods to stimulate their regenerative and vasculogenic potential. This study investigated the potential of a xenogeneic scaffold derived from porcine skin Mucoderm and injections of the pCMV-VEGF165 plasmid ('Neovasculgen') to enhance soft gingival tissue volume and vascularization in an experimental model in rabbits.
View Article and Find Full Text PDFSerum albumin is a popular macromolecule for studying the effect of proteins on the colloidal stability of nanoparticle (NP) dispersions, as well as the protein-nanoparticle interaction and protein corona formation. In this work, we analyze the specific conformation-dependent phase, redox, and fatty acid delivery properties of bovine albumin in the presence of shungite carbon (ShC) molecular graphenes stabilized in aqueous dispersions in the form of NPs in order to reveal the features of NP bioactivity. The formation of NP complexes with proteins (protein corona around NP) affects the transport properties of albumin for the delivery of fatty acids.
View Article and Find Full Text PDFCurrently, no ideal treatment exists to combat skeletal muscle disuse-induced atrophy and loss of strength. Because the activity of AMP-activated protein kinase (AMPK) in rat soleus muscle is suppressed at the early stages of disuse, we hypothesized that pre-treatment of rats with metformin (an AMPK activator) would exert beneficial effects on skeletal muscle during disuse. Muscle disuse was performed via hindlimb suspension (HS).
View Article and Find Full Text PDFRegrowth of atrophied myofibers depends on muscle satellite cells (SCs) that exist outside the plasma membrane. Muscle atrophy appears to result in reduced number of SCs due to apoptosis. Given reduced AMP-activated protein kinase (AMPK) activity during differentiation of primary myoblasts derived from atrophic muscle, we hypothesized that there may be a potential link between AMPK and susceptibility of differentiating myoblasts to apoptosis.
View Article and Find Full Text PDFProlonged inactivity of skeletal muscles due to limb immobilization, bedrest, and exposure to microgravity results in a significant muscle atrophy. Inactivity-induced muscle atrophy is caused by a downregulation of protein synthesis (PS) and increased proteolysis. Mechanistic target of rapamycin complex 1 (mTORC1) is considered to be one of the main regulators of translational capacity (quantity of ribosomes), a key determinant of PS.
View Article and Find Full Text PDF