Publications by authors named "S D Pletnev"

An antibody-based HIV-1 vaccine will require the induction of potent cross-reactive HIV-1-neutralizing responses. To demonstrate feasibility toward this goal, we combined vaccination targeting the fusion-peptide site of vulnerability with infection by simian-human immunodeficiency virus (SHIV). In four macaques with vaccine-induced neutralizing responses, SHIV infection boosted plasma neutralization to 45%-77% breadth (geometric mean 50% inhibitory dilution [ID] ∼100) on a 208-strain panel.

View Article and Find Full Text PDF

The HIV-1 fusion peptide (FP) represents a promising vaccine target, but global FP sequence diversity among circulating strains has limited anti-FP antibodies to ~60% neutralization breadth. Here we evolve the FP-targeting antibody VRC34.01 in vitro to enhance FP-neutralization using site saturation mutagenesis and yeast display.

View Article and Find Full Text PDF

We recently converted the GAF domain of NpR3784 cyanobacteriochrome into near-infrared (NIR) fluorescent proteins (FPs). Unlike cyanobacterichrome, which incorporates phycocyanobilin tetrapyrrole, engineered NIR FPs bind biliverdin abundant in mammalian cells, thus being the smallest scaffold for it. Here, we determined the crystal structure of the brightest blue-shifted protein of the series, miRFP670nano3, at 1.

View Article and Find Full Text PDF

Alphaviruses are RNA viruses that represent emerging public health threats. To identify protective antibodies, we immunized macaques with a mixture of western, eastern, and Venezuelan equine encephalitis virus-like particles (VLPs), a regimen that protects against aerosol challenge with all three viruses. Single- and triple-virus-specific antibodies were isolated, and we identified 21 unique binding groups.

View Article and Find Full Text PDF

The rapid development of new microscopy techniques for cell biology has exposed the need for genetically encoded fluorescent tags with special properties. Fluorescent biomarkers of the same color and spectral range and different fluorescent lifetimes (FLs) became useful for fluorescent lifetime image microscopy (FLIM). One such tag, the green fluorescent protein BrUSLEE (Bright Ultimately Short Lifetime Enhanced Emitter), having an extremely short subnanosecond component of fluorescence lifetime (FL~0.

View Article and Find Full Text PDF