Publications by authors named "S D Pandit"

Blood coagulation is a highly regulated injury response that features polymerization of fibrin fibers to prevent the passage of blood from a damaged vascular endothelium. A growing body of research seeks to monitor coagulation in microfluidic systems but fails to capture coagulation as a response to disruption of the vascular endothelium. Here we present a device that allows compression injury of a defined segment of a microfluidic vascular endothelium and the assessment of coagulation at the injury site.

View Article and Find Full Text PDF

Introduction: The presence of female faculty members in anesthesia residency programs is pivotal for enhancing and supporting diversity and gender equity in medical education. This study probes the intricate interplay between the percentage of female faculty and whether program type and geographical location impact the composition of female faculty.

Methods: For this retrospective cross-sectional analysis, we collected data from the Fellowship and Residency Electronic Interactive Database Access (FREIDA) system to assess the percentages of female faculty in anesthesia residency programs.

View Article and Find Full Text PDF

Bacterial biofilms are highly structured surface associated architecture of micro-colonies, which are strongly bonded with the exopolymeric matrix of their own synthesis. These exopolymeric substances, mainly exopolysaccharides (EPS) initially assist the bacterial adhesion and finally form a bridge over the microcolonies to protect them from environmental assaults and antimicrobial exposure. Bacterial cells in dental biofilm metabolize dietary carbohydrates and produce organic acids.

View Article and Find Full Text PDF

Background: Ventricular fibrillation (VF) is the deadliest arrhythmia, often caused by myocardial ischaemia. VF patients require urgent intervention planned quickly and non-invasively. However, the accuracy with which electrocardiographic (ECG) markers reflect the underlying arrhythmic substrate is unknown.

View Article and Find Full Text PDF

In recent years, the development of novel chemistry routes for the synthesis of organic compounds has attracted special attention. 2,3-Diaminophenazine (DAP), a derivative of Phenazine, is a large group of nitrogen-containing heterocyclic compound with diverse chemical structure and various biological activities, such as antibacterial, antimicrobial, anti-inflammatory, and anticancer activities. Phenazine is a fluorescent molecule with wide range of biological properties.

View Article and Find Full Text PDF