Publications by authors named "S Cristallo"

Article Synopsis
  • Radioactive nuclei that live for millions of years help us understand the Sun's formation and the nucleosynthesis happening when it was born, with lead (Pb) being a key example.
  • Recent measurements of the weak decay of ionized thallium (Tl) provided a more accurate half-life, which was found to be 4.7 times longer than previously thought, thus reducing uncertainty in our calculations.
  • Using these improved decay rates, researchers calculated lead yields in asymptotic giant branch (AGB) stars, confirmed isolation times for solar material, and validated the theory that the Sun formed in a long-lived molecular cloud.
View Article and Find Full Text PDF

^{140}Ce(n,γ) is a key reaction for slow neutron-capture (s-process) nucleosynthesis due to being a bottleneck in the reaction flow. For this reason, it was measured with high accuracy (uncertainty ≈5%) at the n_TOF facility, with an unprecedented combination of a high purity sample and low neutron-sensitivity detectors. The measured Maxwellian averaged cross section is up to 40% higher than previously accepted values.

View Article and Find Full Text PDF

One of the main neutron sources for the astrophysical s process is the reaction ^{13}C(α,n)^{16}O, taking place in thermally pulsing asymptotic giant branch stars at temperatures around 90 MK. To model the nucleosynthesis during this process the reaction cross section needs to be known in the 150-230 keV energy window (Gamow peak). At these sub-Coulomb energies, cross section direct measurements are severely affected by the low event rate, making us rely on input from indirect methods and extrapolations from higher-energy direct data.

View Article and Find Full Text PDF

The neutron capture cross sections of several unstable nuclides acting as branching points in the s process are crucial for stellar nucleosynthesis studies. The unstable ^{171}Tm (t_{1/2}=1.92  yr) is part of the branching around mass A∼170 but its neutron capture cross section as a function of the neutron energy is not known to date.

View Article and Find Full Text PDF

We report on the measurement of the ^{7}Be(n,p)^{7}Li cross section from thermal to approximately 325 keV neutron energy, performed in the high-flux experimental area (EAR2) of the n_TOF facility at CERN. This reaction plays a key role in the lithium yield of the big bang nucleosynthesis (BBN) for standard cosmology. The only two previous time-of-flight measurements performed on this reaction did not cover the energy window of interest for BBN, and they showed a large discrepancy between each other.

View Article and Find Full Text PDF