Blocking iron uptake and metabolism has been emerging as a promising therapeutic strategy for the development of novel antimicrobial compounds. Like all mycobacteria, M. abscessus (Mab) has evolved several countermeasures to scavenge iron from host carrier proteins, including the production of siderophores, which play a crucial role in these processes.
View Article and Find Full Text PDFHMGA proteins are intrinsically disordered (ID) chromatin architectural factors characterized by three DNA binding domains (AT-hooks) that allow them to bind into the DNA minor groove of AT-rich stretches. HMGA are functionally involved in regulating transcription, RNA processing, DNA repair, and chromatin remodeling and dynamics. These proteins are highly expressed and play essential functions during embryonic development.
View Article and Find Full Text PDFNerve Growth Factor (NGF), the prototype of the neurotrophin family, stimulates morphological differentiation and regulates neuronal gene expression by binding to TrkA and p75NTR receptors. It plays a critical role in maintaining the function and phenotype of peripheral sensory and sympathetic neurons and in mediating pain transmission and perception during adulthood. A point mutation in the NGFB gene (leading to the amino acid substitution R100W) is responsible for Hereditary Sensory and Autonomic Neuropathy type V (HSAN V), leading to a congenital pain insensitivity with no clear cognitive impairments, but with alterations in the NGF/proNGF balance.
View Article and Find Full Text PDFTargeting pathogenic mechanisms, rather than essential processes, represents a very attractive approach for the development of new antimycobacterial drugs. In this context, iron acquisition routes have recently emerged as potentially druggable pathways. However, the importance of siderophore biosynthesis in the virulence and pathogenicity of () is still poorly understood.
View Article and Find Full Text PDF