Iterative type I polyketide synthases (PKS) are megaenzymes essential to the biosynthesis of an enormously diverse array of bioactive natural products. Each PKS contains minimally three functional domains, β-ketosynthase (KS), acyltransferase (AT), and acyl carrier protein (ACP), and a subset of reducing domains such as ketoreductase (KR), dehydratase (DH), and enoylreductase (ER). The substrate selection, condensation reactions, and β-keto processing of the polyketide growing chain are highly controlled in a programmed manner.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
April 2017
Conventional petroleum-based chemical industry, although economically still thriving, is now facing great socio-political challenges due to the increasing concerns on climate change and limited availability of fossil resources. In this context, microbial production of fuels and commodity oleochemicals from renewable biomass is being considered a promising sustainable alternative. The increasing understanding of cellular systems has enabled the redesign of microbial metabolism for the production of compounds present in many daily consumer products such as esters, waxes, fatty acids (FA) and fatty alcohols.
View Article and Find Full Text PDFBackground: Microbial synthesis of oleochemicals derived from native fatty acid (FA) metabolism has presented significant advances in recent years. Even so, native FA biosynthetic pathways often provide a narrow variety of usually linear hydrocarbons, thus yielding end products with limited structural diversity. To overcome this limitation, we took advantage of a polyketide synthase-based system from and developed an platform with the capacity to synthesize multimethyl-branched long-chain esters (MBE) with novel chemical structures.
View Article and Find Full Text PDFBackground: Microbial lipid production represents a potential alternative feedstock for the biofuel and oleochemical industries. Since Escherichia coli exhibits many genetic, technical, and biotechnological advantages over native oleaginous bacteria, we aimed to construct a metabolically engineered E. coli strain capable of accumulating high levels of triacylglycerol (TAG) and evaluate its neutral lipid productivity during high cell density fed-batch fermentations.
View Article and Find Full Text PDFOleaginous Rhodococcus strains are able to accumulate large amounts of triacylglycerol (TAG). Phosphatidic acid phosphatase (PAP) enzyme catalyzes the dephosphorylation of phosphatidic acid (PA) to yield diacylglycerol (DAG), a key precursor for TAG biosynthesis. Studies to establish its role in lipid metabolism have been mainly focused in eukaryotes but not in bacteria.
View Article and Find Full Text PDF