Publications by authors named "S Cipiccia"

Two-directional beam-tracking (2DBT) is a method for phase-contrast imaging and tomography that uses an intensity modulator to structure the X-ray beam into an array of independent circular beamlets that are resolved by a high-resolution detector. It features isotropic spatial resolution, provides two-dimensional phase sensitivity, and enables the three-dimensional reconstructions of the refractive index decrement, δ, and the attenuation coefficient, μ. In this work, the angular sensitivity and the spatial resolution of 2DBT images in a synchrotron-based implementation is reported.

View Article and Find Full Text PDF

We apply X-ray ptycho-tomography to perform high-resolution, non-destructive, three-dimensional (3D) imaging of Fe-rich inclusions in paleomagnetically relevant materials (zircon single crystals from the Bishop Tuff ignimbrite). Correlative imaging using quantum diamond magnetic microscopy combined with X-ray fluorescence mapping was used to locate regions containing potential ferromagnetic remanence carriers. Ptycho-tomographic reconstructions with voxel sizes 85 nm and 21 nm were achievable across a field-of-view > 80 µm; voxel sizes as small as 5 nm were achievable over a limited field-of-view using local ptycho-tomography.

View Article and Find Full Text PDF

X-ray microtomography is a nondestructive, three-dimensional inspection technique applied across a vast range of fields and disciplines, ranging from research to industrial, encompassing engineering, biology, and medical research. Phase-contrast imaging extends the domain of application of x-ray microtomography to classes of samples that exhibit weak attenuation, thus appearing with poor contrast in standard x-ray imaging. Notable examples are low-atomic-number materials, like carbon-fiber composites, soft matter, and biological soft tissues.

View Article and Find Full Text PDF

Background: Microscopic imaging of cartilage is a key tool for the study and development of treatments for osteoarthritis. When cellular and sub-cellular resolution is required, histology remains the gold standard approach, albeit limited by the lack of volumetric information as well as by processing artifacts. Cartilage imaging with the sub-cellular resolution has only been demonstrated in the synchrotron environment.

View Article and Find Full Text PDF

The characterisation of fast phenomena at the microscopic scale is required for the understanding of catastrophic responses of materials to loads and shocks, the processing of materials by optical or mechanical means, the processes involved in many key technologies such as additive manufacturing and microfluidics, and the mixing of fuels in combustion. Such processes are usually stochastic in nature and occur within the opaque interior volumes of materials or samples, with complex dynamics that evolve in all three dimensions at speeds exceeding many meters per second. There is therefore a need for the ability to record three-dimensional X-ray movies of irreversible processes with resolutions of micrometers and frame rates of microseconds.

View Article and Find Full Text PDF