The oncogene encodes a tyrosine kinase (TK) receptor. Its activation protects cells from death but also stimulates DNA damage response by triggering excess replicative stress. Transcriptomic classification of cancer cell lines based on expression showed that response to the PARP inhibitor (PARPi) olaparib is poorer in overexpressing cell lines.
View Article and Find Full Text PDFBackground: One of the effects of oncogenic signaling is metabolic reprogramming of tumor cells to support anabolic growth, opening the way to therapeutic targeting of metabolic pathways.
Methods: We studied NAD biosynthesis in BRAF inhibitor (BRAFi)-resistant (BiR) melanoma cell lines. Data in cell lines were confirmed by immunohistochemistry in biopsies from 17 patients with metastatic melanoma (MM) before and after the acquisition of resistance to BRAFi.
Even if NOTCH1 is commonly mutated in chronic lymphocytic leukemia (CLL), its functional impact in the disease remains unclear. Using CRISPR/Cas9-generated Mec-1 cell line models, we show that NOTCH1 regulates growth and homing of CLL cells by dictating expression levels of the tumor suppressor gene DUSP22. Specifically, NOTCH1 affects the methylation of DUSP22 promoter by modulating a nuclear complex, which tunes the activity of DNA methyltransferase 3A (DNMT3A).
View Article and Find Full Text PDFThe kinase receptor encoded by the Met oncogene is a sensible target for cancer therapy. The chimeric monovalent Fab fragment of the DN30 monoclonal antibody (MvDN30) has an odd mechanism of action, based on cell surface removal of Met via activation of specific plasma membrane proteases. However, the short half-life of the Fab, due to its low molecular weight, is a severe limitation for the deployment in therapy.
View Article and Find Full Text PDFAn awesome number of experimental and clinical evidences indicate that constitutive activation of the Met oncogenic receptor plays a critical role in the progression of cancer toward metastasis and/or resistance to targeted therapies. While mutations are rare, the common mechanism of Met activation is overexpression, either by gene amplification ('addiction') or transcriptional activation ('expedience'). In the first instance ligand-independent kinase activation plays a major role in sustaining the transformed phenotype.
View Article and Find Full Text PDF