Publications by authors named "S Chiodini"

Controlling light at subwavelength scales is crucial in nanophotonics. Hyperbolic polaritons, supporting arbitrarily large wavevectors, enable extreme light confinement beyond the diffraction limit. Traditional hyperbolic metamaterials suffer from high losses due to metallic components, while natural low-loss hyperbolic phonon polaritons are limited to the mid-infrared range.

View Article and Find Full Text PDF

Photo-induced isomerization of azobenzene molecules drives mass migrations in azopolymer samples. The resulting macroscopic directional photo-deformation of the material morphology has found many applications in literature, although the fundamental mechanisms behind this mass transfer are still under debate. Hence, it is of paramount importance to find quantitative observables that could drive the community toward a better understanding of this phenomenon.

View Article and Find Full Text PDF

This paper investigates the possibility of realizing ice sensors based on the electrical response of thin strips made from pressed graphene nano-platelets. The novelty of this work resides in the use of the same graphene strips that can act as heating elements via the Joule effect, thus opening the route for a combined device able to both detect and remove ice. A planar capacitive sensor is designed and fabricated, in which the graphene strip acts as one of the armatures.

View Article and Find Full Text PDF

The ability to produce 3D maps with infrared radiometric information is of great interest for many applications, such as rover navigation, industrial plant monitoring, and rescue robotics. In this paper, we present a system for large-scale thermal mapping based on IR thermal images and 3D LiDAR point cloud data fusion. The alignment between the point clouds and the thermal images is carried out using the extrinsic camera-to-LiDAR parameters, obtained by means of a dedicated calibration process.

View Article and Find Full Text PDF

The morphology of sub-monolayer sexithiophene films has been investigated in situ and ex situ as a function of the substrate temperature of deposition. In this thickness range, monolayer terraces formed of edge-on molecules, i.e.

View Article and Find Full Text PDF