The unique optical properties of graphene, with broadband absorption and ultrafast response, make it a critical component of optoelectronic and spintronic devices. Using time-resolved momentum microscopy with high data rate and high dynamic range, we report momentum-space measurements of electrons promoted to the graphene conduction band with visible light and their subsequent relaxation. We observe a pronounced nonthermal distribution of nascent photoexcited electrons with lattice pseudospin polarization in remarkable agreement with results of simple tight-binding theory.
View Article and Find Full Text PDFImaging energy filters in photoelectron microscopes and momentum microscopes use spherical fields with deflection angles of 90°, 180° and even 2 × 180°. These instruments are optimized for high energy resolution, and exhibit image aberrations when operated in high transmission mode at medium energy resolution. Here, a new approach is presented for bandpass-filtered imaging in real or reciprocal space using an electrostatic dodecapole with an asymmetric electrode array.
View Article and Find Full Text PDFX-ray photoelectron diffraction (XPD) is a powerful technique that yields detailed structural information of solids and thin films that complements electronic structure measurements. Among the strongholds of XPD we can identify dopant sites, track structural phase transitions, and perform holographic reconstruction. High-resolution imaging of k-distributions (momentum microscopy) presents a new approach to core-level photoemission.
View Article and Find Full Text PDFUsing time- and angle-resolved photoemission, we present momentum- and energy-resolved measurements of exciton coupling in monolayer WS_{2}. We observe strong intravalley coupling between the B_{1s} exciton and A_{n>1} states. Our measurements indicate that the dominant valley depolarization mechanism conserves the exciton binding energy and momentum.
View Article and Find Full Text PDFThe small time gaps of synchrotron radiation in conventional multi-bunch mode (100-500 MHz) or laser-based sources with high pulse rate (∼80 MHz) are prohibitive for time-of-flight (ToF) based photoelectron spectroscopy. Detectors with time resolution in the 100 ps range yield only 20-100 resolved time slices within the small time gap. Here we present two techniques of implementing efficient ToF recording at sources with high repetition rate.
View Article and Find Full Text PDF