A metal- and solvent-free, one-pot and TFA-promoted method for the construction of hetero/aryl-substituted quinoxalin-2-ones, pyrazin-2(1)-ones, and pyrimidin-4(3)-ones is reported. This method involves the reaction of chloro-derivatives of nitrogen heterocycles with electron-rich arenes/heteroarenes, followed by hydroxylation. This protocol is easy to use, providing access to (hetero)aryl-substituted -heterocycles in good yields.
View Article and Find Full Text PDFRetinal capillary degeneration is a clinical hallmark of the early stages of diabetic retinopathy (DR). Our recent studies have revealed that diabetes-induced retinal capillary stiffening plays a crucial and previously unrecognized causal role in inflammation-mediated degeneration of retinal capillaries. The increase in retinal capillary stiffness results from the overexpression of lysyl oxidase, an enzyme that crosslinks and stiffens the subendothelial matrix.
View Article and Find Full Text PDFRetinal capillary degeneration is a clinical hallmark of the early stages of diabetic retinopathy (DR). Our recent studies have revealed that diabetes-induced increase in retinal capillary stiffness plays a crucial and previously unrecognized causal role in inflammation-mediated degeneration of retinal capillaries. Retinal capillary stiffening results from overexpression of lysyl oxidase, an enzyme that crosslinks and stiffens the subendothelial matrix.
View Article and Find Full Text PDFVascular inflammation is known to cause degeneration of retinal capillaries in early diabetic retinopathy (DR), a major microvascular complication of diabetes. Past studies investigating these diabetes-induced retinal vascular abnormalities have focused primarily on the role of molecular or biochemical cues. Here we show that retinal vascular inflammation and degeneration in diabetes are also mechanically regulated by the increase in retinal vascular stiffness caused by overexpression of the collagen-cross-linking enzyme lysyl oxidase (LOX).
View Article and Find Full Text PDFUnlabelled: Endothelial cell (EC) activation is a crucial determinant of retinal vascular inflammation associated with diabetic retinopathy (DR), a major microvascular complication of diabetes. We previously showed that, similar to abnormal biochemical factors, aberrant mechanical cues in the form of lysyl oxidase (LOX)-dependent subendothelial matrix stiffening also contribute significantly to retinal EC activation in diabetes. Yet, how LOX is itself regulated and precisely how it mechanically controls retinal EC activation in diabetes is poorly understood.
View Article and Find Full Text PDF