Publications by authors named "S Chamindrani Mendis-Handagama"

Although the thyroid hormone has stimulatory effects and anti-Mullerian hormone (AMH) has inhibitory effects on prepubertal Leydig cell (LC) differentiation, it is important to find out whether the stimulatory effect of thyroid hormone could overcome the inhibitory effect of AMH on postnatal LC differentiation. Therefore, the objective of the present study was to use the anti-Mullerian hormone overexpressing mouse (AMH++) model to understand the simultaneous effects of AMH and thyroid hormone on postnatal LC differentiation, proliferation, maturation and function and to test whether the inhibitory effect of AMH could be overcome by the stimulatory effect of the thyroid hormone. Four age groups (7, 21, 40, 90 days) of control (C57BL/6; C) and AMH++ were used.

View Article and Find Full Text PDF

Alternative polyadenylation controls expression of genes in many tissues including immune cells and male germ cells. The τCstF-64 polyadenylation protein is expressed in both cell types, and we previously showed that Cstf2t, the gene encoding τCstF-64 was necessary for spermatogenesis and fertilization. Here we examine consequences of τCstF-64 loss in both germ cells and immune cells.

View Article and Find Full Text PDF

Anti-Mullerian hormone (AMH) is considered as a negative regulator of postnatal Leydig cell (LC) differentiation, because AMH over expressing mice (Mt-hAMH mice) testes are deficient in LC. Therefore, in the present study Mt-hAMH mice was used as a model to examine the process of postnatal LC differentiation. Testis structure-function studies were performed in age-matching Mt-hAMH and C57BL/6 (controls) mice; testicular components were quantified and circulating testosterone and thyroid hormone levels (thyroxine/T4 and triiodothyronine/T3; necessary for postnatal LC differentiation) were determined.

View Article and Find Full Text PDF

We tested whether puberty in golden hamsters is photoperiodically controlled. Hamsters were raised under 14:10 hours Light:Dark (14L) and 1:23 hours Light:Dark (1L) respectively, from birth to 28 days and tested for various parameters. Body weight, Leydig cell (LC) size and testicular testosterone secretion were greater and plasma thyroxin (T4), testicular androstenedione secretion and LC number were lower (P<0.

View Article and Find Full Text PDF

Information on postnatal Leydig cell (LC) differentiation in the Mongolian gerbil has been unavailable. Therefore, current investigation was designed to examine LC lineage differentiationin this rodent, from birth to adulthood. Gerbil testes at 1 day, 1-7 weeks (w), 2 and 3 months of age were conventionally processed by light and transmission electron microscopy.

View Article and Find Full Text PDF