Background: Novel antimalarials are needed to address emerging resistance to artemisinin and partner drugs. We did two trials to evaluate safety, tolerability, pharmacokinetics, and activity against blood stage Plasmodium falciparum for the drug candidate MMV533.
Methods: A phase 1a first-in-human (FIH) trial was conducted at Nucleus Network (Melbourne, VIC, Australia).
Background: The combination antimalarial artefenomel-piperaquine failed to achieve target efficacy in a phase 2b study in Africa and Vietnam. We retrospectively evaluated whether characterizing the pharmacological interaction of this antimalarial combination in a volunteer infection study (VIS) would have enabled prediction of the phase 2b study results.
Methods: Twenty-four healthy adults enrolled over three consecutive cohorts were inoculated with Plasmodium falciparum-infected erythrocytes on day 0.
Background: Selection of the most promising radiotracer candidates for radiolabeling is a difficult step in the development of radiotracer pharmaceuticals, especially for the brain. Mass spectrometry (MS) is an alternative to study ex vivo the characteristics of candidates, but most MS studies are complicated by the pharmacologic doses injected and the dissection of regions to study candidate biodistribution. In this study, we tested the ability of a triple quadrupole analyzer (TQ LC-MS/MS) to quantify low concentrations of a validated precursor of a radiotracer targeting the DAT (LBT-999) in dissected regions.
View Article and Find Full Text PDFOver the last decades, the role of neuroinflammation in neuropsychiatric conditions has attracted an exponentially growing interest. A key driver for this trend was the ability to image brain inflammation in vivo using PET radioligands targeting the Translocator Protein 18 kDa (TSPO), which is known to be expressed in activated microglia and astrocytes upon inflammatory events as well as constitutively in endothelial cells. TSPO is a mitochondrial protein that is expressed mostly by microglial cells upon activation but is also expressed by astrocytes in some conditions and constitutively by endothelial cells.
View Article and Find Full Text PDFAtoguanil™ is a novel complex of atovaquone (ATV) and proguanil (PG) with enhanced ATV bioavailability compared to Malarone®. This pilot study assessed whether the relative bioavailability (F) of ATV, PG, and the primary PG metabolite cycloguanil (CG) following a single oral dose in the fed state of Atoguanil was similar to Malarone despite a 50% lower ATV dose. This open-label, single-dose, randomized 2-period, 2-treatment, balanced crossover study was conducted between 17th November 2021 and 18th March 2022.
View Article and Find Full Text PDF