Background: Respiratory virus infections are main triggers of asthma exacerbations. Tezepelumab, an anti-TSLP mAb, reduces exacerbations in patients with asthma, but the effect of blocking TSLP on host epithelial resistance and tolerance to virus infection is not known.
Aim: To examine effects of blocking TSLP in patients with asthma on host resistance (IFNβ, IFNλ, and viral load) and on the airway epithelial inflammatory response to viral challenge.
Background: Lower respiratory infections caused by ssRNA viruses are a major health burden globally. Translational mouse models are a valuable tool for medical research, including research on respiratory viral infections. In in vivo mouse models, synthetic dsRNA can be used as a surrogate for ssRNA virus replication.
View Article and Find Full Text PDFAllergic asthma is linked to impaired bronchial epithelial secretion of IFNs, which may be causally linked to the increased risk of viral exacerbations. We have previously shown that allergen immunotherapy (AIT) effectively reduces asthma exacerbations and prevents respiratory infections requiring antibiotics; however, whether AIT alters antiviral immunity is still unknown. To investigate the effect of house dust mite sublingual AIT (HDM-SLIT) on bronchial epithelial antiviral and inflammatory responses in patients with allergic asthma.
View Article and Find Full Text PDF