Publications by authors named "S Centeno"

Polymer microgels are swollen macromolecular networks with a typical size of hundred of nanometers to several microns that show an extraordinary open and responsive architecture to different external stimuli, being therefore important candidates for nanobiotechnology and nanomedical applications such as biocatalysis, sensing and drug delivery. It is therefore crucial to understand the delicate balance of physical-chemical interactions between the polymer backbone and solvent molecules that to a high extent determine their responsivity. In particular, the co-nonsolvency effect of poly(N-isopropylacrylamide) in aqueous alcohols is highly discussed, and there is a disagreement between molecular dynamics (MD) simulations (from literature) of the preferential adsorption of alcohol on the polymer chains and the values obtained by several empirical methods that mostly probe the bulk solvent properties.

View Article and Find Full Text PDF

Microgels are water-swollen, crosslinked polymers that are widely used as colloidal building blocks in scaffold materials for tissue engineering and regenerative medicine. Microgels can be controlled in their stiffness, degree of swelling, and mesh size depending on their polymer architecture, crosslink density, and fabrication method-all of which influence their function and interaction with the environment. Currently, there is a lack of understanding of how the polymer composition influences the internal structure of soft microgels and how this morphology affects specific biomedical applications.

View Article and Find Full Text PDF

In this report, a versatile method is demonstrated to create colloidal suprastructures by assembly and supramolecular interlinking of microgels using droplet-based microfluidics. The behavior of the microgels is systematically investigated to evaluate the influence of their concentration on their distribution between the continuous, the droplet phase, and the interface. At low concentrations, microgels are mainly localized at the water-oil interface whereas an excess of microgels results, following the complete coverage of the water-oil interface, in their distribution in the continuous phase.

View Article and Find Full Text PDF

Therapeutic antibodies are the key treatment option for various cytokine-mediated diseases, such as rheumatoid arthritis, psoriasis, and inflammatory bowel disease. However, systemic injection of these antibodies can cause side effects and suppress the immune system. Moreover, clearance of therapeutic antibodies from the blood is limiting their efficacy.

View Article and Find Full Text PDF

A series of medium- and long-chain zinc carboxylates (zinc octanoate, zinc nonanoate, zinc decanoate, zinc undecanoate, zinc dodecanoate, zinc pivalate, zinc stearate, zinc palmitate, zinc oleate, and zinc azelate) was analyzed by ultra-high-field Zn NMR spectroscopy up to 35.2 T, as well as C NMR and FTIR spectroscopy. We also report the single-crystal X-ray diffraction structures of zinc nonanoate, zinc decanoate, and zinc oleate-the first long-chain carboxylate single-crystals to be reported for zinc.

View Article and Find Full Text PDF