Publications by authors named "S Caramori"

The photoelectrochemical oxidation of 5-hydroxymethylfurfural (HMF), a biomass-derived intermediate, to 2,5-furandicarboxylic acid (FDCA), a key building block for industrial applications, is a well-studied anodic reaction. This photoelectrochemical (PEC) conversion typically requires an electron mediator, such as TEMPO, regardless of the semiconductor used. Various electrocatalysts can also perform this reaction electrochemically, without additional organic species in the electrolyte.

View Article and Find Full Text PDF

The electrified production of hydrogen peroxide (HO) by oxygen reduction reaction (ORR) is attractive to increase the sustainability of chemical industry. Here the same chains of intrinsically conductive polymer, poly(3,4-ethylenedioxythiophene) (PEDOT) are utilized, as ORR electrocatalyst, while varying polymeric primary dopants (PSS and Nafion) and the level of secondary doping with DMSO. These changes modulate various properties of the film, such as its microscale organization and electronic conductivity.

View Article and Find Full Text PDF

We explored the electrochemical behavior of antimony-doped tin oxide (ATO) and perylene diimide (PDI)-sensitized ATO (ATO-PDI) for the (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) mediated conversion of 5-hydroxymethyl furfural (HMF) to 2,5-furandicarboxylic acid (FDCA), a value-added substrate for alternative polymer synthesis. We first showed that ATO displayed good electrocatalytic properties towards TEMPO, affording a quasi-reversible response with a heterogeneous rate constant on the order of 2×10 cm s. We then evaluated the performance of ATO under exhaustive electrolysis of HMF in basic aqueous electrolyte, reaching 80 % Faradaic Efficiency (FE) for FDCA production.

View Article and Find Full Text PDF

Contamination by pharmaceuticals adversely affects the quality of natural water, causing environmental and health concerns. In this study, target drugs (oxazepam, OZ, 17-α-ethinylestradiol, EE2, and drospirenone, DRO), which have been extensively detected in the effluents of WWTPs over the past decades, were selected. We report here a new photoactive system, operating under visible light, capable of degrading EE2, OZ and DRO in water.

View Article and Find Full Text PDF

In view of developing photoelectrosynthetic cells which are able to store solar energy in chemical bonds, water splitting is usually the reaction of choice when targeting hydrogen production. However, alternative approaches can be considered, aimed at substituting the anodic reaction of water oxidation with more commercially capitalizable oxidations. Among them, the production of bromine from bromide ions was investigated long back in the 1980s by Texas Instruments.

View Article and Find Full Text PDF