: Temperature-sensitive (TS) mutants of TP53 are thermally unstable, unfolded, and inactive at body temperature but can be refolded and reactivated at sub-physiological temperatures. TS TP53 may be amenable for functional rescue by hypothermia or structure-stabilizing drugs, and may retain low-level transcriptional activity at 37 °C. TP53 mutations are observed in 47% of all esophageal cancers (ECs) and 25% to 40% of gastric cancers (GCs).
View Article and Find Full Text PDFBackground: Risk factors for pancreatic ductal adenocarcinoma (PDAC) include tobacco/alcohol abuse, genetic predisposition, insulin resistance, and pancreatic cysts. Despite these well-established risk factors and the screening of high-risk individuals, some people still develop PDAC. This study aims to explore a potential risk factor for PDAC by investigating the association between fungal toxins (FT) and environmental toxins (ET) and the disease.
View Article and Find Full Text PDFRaising public awareness about the relevance of supporting sustainable practices is required owing to the phenomena of global warming caused by the rising production of greenhouse gases. The healthcare sector generates a relevant proportion of the total carbon emissions in developed countries, and radiology is estimated to be a major contributor to this carbon footprint. Neuroradiology markedly contributes to this negative environmental effect, as this radiological subspecialty generates a high proportion of diagnostic and interventional imaging procedures, the majority of them requiring high energy-intensive equipment.
View Article and Find Full Text PDFIntroduction: Calculation of a T1w/T2w ratio was introduced as a proxy for myelin integrity in the brain of multiple sclerosis (MS) patients. Since nowadays 3D FLAIR is commonly used for lesion detection instead of T2w images, we introduce a T1w/FLAIR ratio as an alternative for the T1w/T2w ratio.
Objectives: Bias and intensity variation are widely present between different scanners, between subjects and within subjects over time in T1w, T2w and FLAIR images.