Biological clocks and other molecular biomarkers of aging are difficult to implement widely in a clinical setting. In this study, we used routinely collected hematological markers to develop an aging clock to predict blood age and determine whether the difference between predicted age and chronologic age (aging gap) is associated with advanced aging in mice. Data from 2,562 mice of both sexes and three strains were drawn from two longitudinal studies of aging.
View Article and Find Full Text PDFIntroduction: Transcranial Magnetic Stimulation (TMS) is a noninvasive technique that uses pulsed magnetic fields to affect the physiology of the brain and central nervous system. Repetitive TMS (rTMS) has been used to study and treat several neurological conditions, but its complex molecular basis is largely unexplored.
Methods: Utilizing three experimental rat models (, , and ) and employing genome-wide microarray analysis, our study reveals the extensive impact of rTMS treatment on gene expression patterns.