Nanotechnology has brought about a significant revolution in drug delivery, and research in this domain is increasingly focusing on understanding the role of nanoparticle (NP) characteristics in drug delivery efficiency. First and foremost, we center our attention on the size of nanoparticles. Studies have indicated that NP size significantly influences factors such as circulation time, targeting capabilities, and cellular uptake.
View Article and Find Full Text PDFEspecially in higher eukaryotes, the N termini of proteins are subject to enzymatic modifications, with the acetylation of the alpha-amino group of nascent polypeptides being a prominent one. In recent years, the specificities and substrates of the enzymes responsible for this modification, the Nα-terminal acetyltransferases, have been mapped in several proteomic studies. Aberrant expression of, and mutations in these enzymes were found to be associated with several human diseases, explaining the growing interest in protein Nα-terminal acetylation.
View Article and Find Full Text PDFGemcitabine (GEM) is a first-line treatment for pancreatic ductal adenocarcinoma (PDAC) patients, causing side effects and poor overall survival. Eighty percent of patients often develop resistance rapidly to GEM. Developing therapeutic approaches and increasing sensitivity to gemcitabine in PDAC has become one of the challenges in cancer research.
View Article and Find Full Text PDFThe World Health Organization estimates that 31 foodborne pathogen account for 600 million cases of illness annually. This study, conducted in a pediatric emergency department in Turkey, addresses the limited research on pediatric foodborne diseases (FD) in the country, exposing a significant knowledge gap. Analyzing 17,091 pediatric cases, 106 FD cases were identified, predominantly affecting boys (94.
View Article and Find Full Text PDFThe physicochemical properties (size, shape, zeta potential, porosity, elasticity, etc.) of nanocarriers influence their biological behavior directly, which may result in alterations of the therapeutic outcome. Understanding the effect of shape on the cellular interaction and biodistribution of intravenously injected particles could have fundamental importance for the rational design of drug delivery systems.
View Article and Find Full Text PDF