Publications by authors named "S Cairns"

Physical inactivity is a leading risk factor for non-communicable diseases. Climate change is now regarded as the biggest threat to global public health. Electric micromobility (e-micromobility, including e-bikes, e-cargo bikes, and e-scooters) has the potential to simultaneously increase people's overall physical activity while decreasing greenhouse gas emissions where it substitutes for motorised transport.

View Article and Find Full Text PDF

A new species of primnoid octocoral, Plumarella williamsi, is described from the west coast of the Unites States, ranging from Baja California to Washington at 55-735 m. Previously reported as the Japanese species P. longispina Kinoshita, 1908, it differs from that species in having fewer and more massive body wall scales, taller marginal scales, and larger and less granular coenenchymal scales.

View Article and Find Full Text PDF

Azooxanthellate scleractinian corals, a group of species that lack a symbiotic relationship with dinoflagellates, are influenced by environmental variables at various scales. As the global commitment to sustainably manage ocean ecosystems and resources rises, there is a growing need to describe biodiversity trends in previously unsampled areas. Benthic invertebrate research in South Africa is a developing field, and many taxa in deep water environments remain inadequately characterized.

View Article and Find Full Text PDF

Large trans-sarcolemmal ionic shifts occur with fatiguing exercise or stimulation of isolated muscles. However, it is unknown how resting membrane potential (E) and intracellular sodium concentration ([Na]) change with repeated contractions in living mammals. We investigated (i) whether [Na] (peak, kinetics) can reveal changes of Na-K pump activity during brief or fatiguing stimulation and (ii) how resting E and [Na] change during fatigue and recovery of rat soleus muscle in situ.

View Article and Find Full Text PDF

The integration of morphological and molecular lines of evidence has enabled the family Deltocyathidae to be erected to accommodate Deltocyathus species that were previously ascribed to the family Caryophylliidae. However, although displaying the same morphological characteristics as other species of Deltocyathus , molecular data suggested that D. magnificus was phylogenetically distant from Deltocyathidae, falling within the family Turbinoliidae instead.

View Article and Find Full Text PDF