The Xyloglucan endotransglucosylase/hydrolase (XTH) family, a group of cell wall-modifying enzymes, plays crucial roles in plant growth, development, and stress adaptation. The quality and yield of Chinese jujube () fruit are significantly impacted by environmental stresses, including excessive salinity, drought, freezing, and disease. However, there has been no report of the XTH encoding genes present in the Chinese jujube genome and their response transcription level under various stresses.
View Article and Find Full Text PDFThis comprehensive review provides an in-depth exploration of the intriguing phenomenon of parental coprophagy in wild birds and its profound implications on the influence of adult avian parents' health. This review investigates the composition and dynamics of avian feces' microbiota, casting light on the various dietary, environmental, and genetic factors that influence its diversity. Furthermore, it emphasizes parental coprophagy, a behavior observed in numerous bird species, particularly among herbivorous and passerine birds.
View Article and Find Full Text PDFWith the increasing societal demand for sustainable and renewable energy, supercapacitors have become research hotspots. Transition metal oxides, due to their high capacitance and abundant resources, are the preferred electrode materials. However, their poor conductivity and volume changes limit performance enhancement.
View Article and Find Full Text PDFUltra-high-performance concrete (UHPC) is widely used in engineering due to its exceptional mechanical properties, particularly compressive strength. Accurate prediction of the compressive strength is critical for optimizing mix proportions but remains challenging due to data dispersion, limited data availability, and complex material interactions. This study enhances the Gaussian Process (GP) model to address these challenges by incorporating Singular Value Decomposition (SVD) and Kalman Filtering and Smoothing (KF/KS).
View Article and Find Full Text PDFis a soil-borne phytopathogenic fungus causing destructive Verticillium wilt disease that greatly threats cotton production worldwide. The mechanism of cotton resistance to Verticillium wilt is very complex and requires further research. In this study, RNA-sequencing was used to investigate the defense responses of cotton leaves using varieties resistant (Zhongzhimian 2, or Z2) or susceptible (Xinluzao 7, or X7) to .
View Article and Find Full Text PDF