Publications by authors named "S C Seo"

Freestanding networked nanoparticle (NP) films hold substantial potential due to their high surface areas and customizable porosities. However, NPs with high surface energies and heterogeneous sizes or shapes present considerable challenges as they tend to aggregate, compromising their structural integrities. In this study, we report the scalable fabrication of ultrathin, bicontinuous, and densely packed carbon NP films via Pickering emulsion-mediated interfacial assembly.

View Article and Find Full Text PDF

A two-dimensional array of microfluidic ports with remote-controlled valve actuation is of great interest for applications involving localized chemical stimulation. Herein, a macroporous silicon-based platform where each pore contains an independently controllable valve made from poly(N-isopropylacrylamide) (PNIPAM) brushes is proposed. These valves are coated with silica-encapsulated gold nanorods (GNRs) for NIR-actuated switching capability.

View Article and Find Full Text PDF

Numerous studies have investigated the surface treatment of implants using various types of plasma, including atmospheric pressure plasma and vacuum plasma, to remove impurities and increase surface energy, thereby enhancing osseointegration. Most previous studies have focused on generating plasma directly on the implant surface by using the implant as an electrode for plasma discharge. However, plasmas generated under atmospheric and moderate vacuum conditions often have a limited plasma volume, meaning the shape of the electrodes significantly influences the local electric field characteristics, which in turn affects plasma behavior.

View Article and Find Full Text PDF

We compared the salt tolerance and proteolytic activity of 120 strains of each of , , and . Most strains exhibited growth in 12% (w/v) NaCl and showed proteolytic activity in 10% or 11% NaCl. The majority of strains grew in 14% NaCl and showed proteolytic activity in 12% or 13% NaCl.

View Article and Find Full Text PDF

Background: Double-strand breaks (DSBs) are primarily repaired through non-homologous end joining (NHEJ) and homologous recombination (HR). Given that DSBs are highly cytotoxic, PARP inhibitors (PARPi), a prominent class of anticancer drugs, are designed to target tumors with HR deficiency (HRD), such as those harboring BRCA mutations. However, many tumor cells acquire resistance to PARPi, often by restoring HR in HRD cells through the inactivation of NHEJ.

View Article and Find Full Text PDF