A two-dimensional (2D) Weyl semimetal, akin to a spinful variant of graphene, represents a topological matter characterized by Weyl fermion-like quasiparticles in low dimensions. The spinful linear band structure in two dimensions gives rise to distinctive topological properties, accompanied by the emergence of Fermi string edge states. We report the experimental realization of a 2D Weyl semimetal, bismuthene monolayer grown on SnS(Se) substrates.
View Article and Find Full Text PDFAlthough amplification/overexpression is the predominant mechanism for the oncogenic properties of MDM2, an increasing number of MDM2 somatic missense mutations were identified in cancer patients with the recent advances in sequencing technology. Here, we characterized an MDM2 cancer-associated mutant variant W329G identified from a patient sample that contains a wild-type p53 gene. Trp329 is one of residues that were reported to be critical to MDM2's binding to ribosomal protein L11 (RPL11).
View Article and Find Full Text PDFAlbeit the undesirable attributes of NiO, such as low conductivity, unmanageable defects, and redox reactions occurring at the perovskite/NiO interface, which impede the progress in inverted perovskite solar cells (i-PSCs), it is the most favorable choice of technology for industrialization of PSCs. In this study, we propose a novel Ni vacancy defect modulate approach to leverage the conformal growth and surface self-limiting reaction characteristics of the atomic layer deposition (ALD)-fabricated NiO by varying the O plasma injection time () to induce self-doping. Consequently, NiO thin films with enhanced conductivity, an appropriate Ni/Ni ratio, stable surface states, and ultrathinness are realized as hole-transporting layers (HTLs) in p-i-n PSCs.
View Article and Find Full Text PDFIt is usually difficult to realize high mobility together with a low threshold voltage and good stability for amorphous oxide thin-film transistors (TFTs). In addition, a low fabrication temperature is preferred in terms of enhancing compatibility with the back end of line of the device. In this study, α-IGZO TFTs were prepared by high-power impulse magnetron sputtering (HiPIMS) at room temperature.
View Article and Find Full Text PDF