Publications by authors named "S C J Ng"

Bacteria often attach to surfaces and grow densely-packed communities called biofilms. As biofilms grow, they expand across the surface, increasing their surface area and access to nutrients. Thus, the overall growth rate of a biofilm is directly dependent on its "range expansion" rate.

View Article and Find Full Text PDF

Cultivated meats are typically hybrids of animal cells and plant proteins, but their high production costs limit their scalability. This study explores a cost-effective alternative by hypothesizing that controlling the Maillard and lipid thermal degradation reactions in pure cells can create a meaty aroma that could be extracted from minimal cell quantities. Using spontaneously immortalized porcine myoblasts and fibroblasts adapted to suspension culture with a 1 % serum concentration, we developed a method to isolate flavor precursors via freeze-thawing.

View Article and Find Full Text PDF

: The tocotrienol-rich fraction (TRF) is a lipid-soluble vitamin that has good antioxidant and anti-inflammatory properties. The TRF is widely studied as a potential treatment for various diseases, including bone diseases. However, its application is limited due to its poor oral bioavailability profile, warranting an innovative approach to overcome its pharmacokinetic limitations.

View Article and Find Full Text PDF

A time-lapse live embryo monitoring system provides a powerful approach to recording dynamic developmental events of cultured embryos in detail. By obtaining continuous short-interval images, blastocyst formation can be predicted and embryos can be selected. The objective of this study was to investigate the morphokinetic parameters of fishing cat-domestic cat interspecies somatic cell nuclear transfer (iSCNT) embryos from one-cell to blastocyst stages, and in particular, the cleavage patterns of the first division in iSCNT and IVF embryos, as these play a central role in euploidy.

View Article and Find Full Text PDF

Post-acute coronavirus disease 2019 syndrome (PACS), following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or coronavirus disease 2019 (COVID-19), is typically characterized by long-term debilitating symptoms affecting multiple organs and systems. Unfortunately, there is currently a lack of effective treatment strategies. Altered gut microbiome has been proposed as one of the plausible mechanisms involved in the pathogenesis of PACS; extensive studies have emerged to bridge the gap between the persistent symptoms and the dysbiosis of gut microbiome.

View Article and Find Full Text PDF