Publications by authors named "S Bruzaud"

Plastic biodegradation in natural environments is performed by the microbial biofilm living on its surface. This study identifies for the first time plastic degraders in marine environment, by using stable isotope tracers. Polyhydroxybutyrate (PHB) biodegradation was proved by monitoring microbial cell growth (via scanning electron microscopy and flow cytometry) and activities (via continuous oxygen consumption measurements and H-leucine incorporation for protein synthesis) during 90 days.

View Article and Find Full Text PDF

Plastics are offering a new niche for microorganisms colonizing their surface, the so-called "plastisphere," in which diversity and community structure remain to be characterized and compared across ocean pelagic regions. Here, we compared the bacterial diversity of microorganisms living on plastic marine debris (PMD) and the surrounding free-living (FL) and organic particle-attached (PA) lifestyles sampled during the Tara expeditions in two of the most plastic polluted zones in the world ocean, i.e.

View Article and Find Full Text PDF

In a context where learning databases of microplastic FTIR spectra are often incomplete, the objective of our work was to test whether a synthetic data generation method could be relevant to fill the gaps. To this end, synthetic spectra were generated to create new databases. The effectiveness of machine learning from these databases was then tested and compared with previous results.

View Article and Find Full Text PDF

The recent emergence of studies on plastic contamination of terrestrial environments has revealed the presence of microplastics (MP) in a variety of soil types, from the most densely populated areas to the most remote ones. However, the concentrations and chemical natures of MP in soils vary between studies, and only a few ones have focused on this issue in France. The MICROSOF project aimed to establish the first national references for French soil contamination by microplastics.

View Article and Find Full Text PDF

Biosourced and biodegradable plastics offer a promising solution to reduce environmental impacts of plastics for specific applications. Here, we report a novel bacterium named Alteromonas plasticoclasticus MED1 isolated from the marine plastisphere that forms biofilms on foils of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Experiments of degradation halo, plastic matrix weight loss, bacterial oxygen consumption and heterotrophic biosynthetic activity showed that the bacterial isolate MED1 is able to degrade PHBV and to use it as carbon and energy source.

View Article and Find Full Text PDF