Radio frequency (RF) driven H ion sources are operated at very high power levels of up 100 kW in order to achieve the desired performance. For the experimental setup, these are demanding conditions possibly limiting the source reliability. Therefore, assessing the optimization potential in terms of RF power losses and the RF power transfer efficiency η to the plasma has moved to the focus of both experimental and numerical modeling investigations at particle accelerator and neutral beam heating sources for fusion plasmas.
View Article and Find Full Text PDFRev Sci Instrum
December 2021
The target parameters of negative ion sources regarding the current of extracted negative ions, the current of co-extracted electrons, the pulse duration, the duty cycle, and the availability of the system can be rather strict. Knowledge of plasma parameters such as the electron temperature and the electron density and also properties of molecules or photon fluxes can provide essential insights into the ion source physics needed for reaching the target parameters. Emission spectroscopy is a non-invasive tool enabling access to line-of-sight averaged values of plasma parameters.
View Article and Find Full Text PDFCERN's 160 MeV H(-) linear accelerator (Linac4) is a key constituent of the injector chain upgrade of the Large Hadron Collider that is being installed and commissioned. A cesiated surface ion source prototype is being tested and has delivered a beam intensity of 45 mA within an emittance of 0.3 π ⋅ mm ⋅ mrad.
View Article and Find Full Text PDFOptical emission spectroscopy (OES) measurements of the atomic Balmer series and the molecular Fulcher transition have been carried out at the Linac4 ion source in order to determine plasma parameters. As the spectroscopic system was only relatively calibrated, the data evaluation only yielded rough estimates of the plasma parameters (T(e) ≈ 1.2 eV, n(e) ≈ 1 × 10(19) m(-3), and n(H/)n(H2) ≈ 0.
View Article and Find Full Text PDFLarge RF driven negative hydrogen ion sources are being developed at IPP Garching for the future neutral beam injection system of ITER. The overall power efficiency of these sources is low, because for the RF power supply self-excited generators are utilized and the plasma is generated in small cylindrical sources ("drivers") and expands into the source main volume. At IPP experiments to reduce the primary power and the RF power required for the plasma production are performed in two ways: The oscillator generator of the prototype source has been replaced by a transistorized RF transmitter and two alternative driver concepts, a spiral coil, in which the field is concentrated by ferrites, which omits the losses by plasma expansion and a helicon source are being tested.
View Article and Find Full Text PDF