CD4 T-cell subsets play a major role in the host response to infection, and a healthy immune system requires a fine balance between reactivity and tolerance. This balance is in part maintained by regulatory T cells (Treg), which promote tolerance, and loss of immune tolerance contributes to autoimmunity. As the T cells which drive immunity are diverse, identifying and understanding how these subsets function requires specific biomarkers.
View Article and Find Full Text PDFThe transcription factor FOXP3 is essential for the formation and function of regulatory T cells (Tregs), and Tregs are essential for maintaining immune homeostasis and tolerance. This is demonstrated by a lethal autoimmune defect in mice lacking Foxp3 and in immunodysregulation polyendocrinopathy enteropathy X-linked syndrome patients. However, little is known about the molecular basis of human FOXP3 function or the relationship between direct and indirect targets of FOXP3 in human Tregs.
View Article and Find Full Text PDFAdult stem cells are capable of generating all of the cells of the hematopoietic system, and this process is orchestrated in part by the interactions between these cells and the stroma. T cell progenitors emerge from the stem cell compartment and migrate to the thymus, where their terminal differentiation and maturation occur, and it is during this phase that selection shapes the immune repertoire. Notch ligands, including Delta-like 1 (DL1), play a critical role in this lymphoid differentiation.
View Article and Find Full Text PDFRegulatory T cells (Treg) have recently come to the fore in studies of immune regulation, particularly in autoimmune disease and cancer. While there appear to be several distinct subsets of T cells with regulatory function, a population described as natural Treg and characterized by expression of the transcription factor FOXP3 has attracted particular interest. These cells can be enriched using the surface markers CD4 and CD25, and cord blood is a convenient source of CD25+ Treg.
View Article and Find Full Text PDFTumor necrosis factors alpha and beta (TNF-alpha and TNF-beta) are multifaceted polypeptide cytokines which may mediate some of the significant changes in cellular homeostasis which accompany the invasion of the mammalian host by viruses, bacteria, and parasites. Although it is well established that bacterial lipopolysaccharide is a potent inducer of TNF-alpha, there is still very little known of the types of agents which can trigger the production of TNFs in mononuclear leukocytes. Using an enzyme-linked immunosorbent assay for measuring TNF-alpha and TNF-beta, we examined the capacity of various T-lymphocyte and beta-lymphocyte mitogens as well as microbial components to stimulate production of these cytokines in culture.
View Article and Find Full Text PDF