Publications by authors named "S Bratskaya"

The local application of broad-spectrum antibiotics via polymeric drug delivery systems is a promising alternative to their systemic administration in wound healing, prevention and treatment of infections associated with surgical implants. However, low and poorly controlled loading efficiency and 100% burst release are common problems for the materials with weak physical interaction between antibiotics and polymeric matrices. Here, we report a new multifunctional carboxymethyl chitosan (CMC) cryogel, which efficiently prevents bacterial adhesion to the surface, kills bacteria in the solution via controlled release of ciprofloxacin (CIP), and promotes fibroblast proliferation.

View Article and Find Full Text PDF

Cross-linking chitosan at room and subzero temperature using a series of diglycidyl ethers of glycols (DEs)-ethylene glycol (EGDE), 1,4-butanediol (BDDE), and poly(ethylene glycol) (PEGDE) has been investigated to demonstrate that DEs can be a more powerful alternative to glutaraldehyde (GA) for fabrication of biocompatible chitosan cryogels with tunable properties. Gelation of chitosan with DEs was significantly slower than with GA, allowing formation of cryogels with larger pores and higher permeability, more suitable for flow-through applications and cell culturing. Increased hydration of the cross-links with increased DE chain length weakened intermolecular hydrogen bonding in chitosan and improved cryogel elasticity.

View Article and Find Full Text PDF

Natural radioactive isotopes serve as a useful proxy of geological and geochemical processes in marine environment, while radiocesium serves as an indicator of man-made contamination. Monitoring of natural and anthropogenic radioactivity under conditions of the climate changes in the Arctic region is of high importance in investigations of this natural system. For the first time, we report the data on spatial distribution of natural (Th, Ra, K) and anthropogenic (Cs) radionuclide activities in the marine sediments from Chaun Bay (East Siberian Sea).

View Article and Find Full Text PDF

Here, we report a new version of the extended Rate Constants Distribution (RCD) model for metal ion sorption, which includes complex-formation equilibria. With the RCD-complex model, one can predict sorbent performance in the presence of complexing agents using data on metal ion sorption from ligand-free solutions and a set of coefficients for sorption rate constants of different ionic species. The RCD-complex model was applied to breakthrough curves of Cu(II) sorption from acetate and tartrate solutions on polyethyleneimine (PEI) monolith cryogel at different flow rates and ionic speciation.

View Article and Find Full Text PDF

Combined experimental Fe Mössbauer and theoretical DFT study of a series of iron(II)-centered (pseudo)macrobicyclic analogs and homologs was performed. The field strength of the corresponding (pseudo)encapsulating ligand was found to affect both the spin state of a caged iron(II) ion and the electron density at its nucleus. In a row of the iron(II) tris-dioximates, passing from the non-macrocyclic complex to its monocapped pseudomacrobicyclic analog caused an increase both in the ligand field strength and in the electron density at the Fe ion, and, therefore, a decrease in the isomer shift (IS) value (so-called "semiclathrochelate effect").

View Article and Find Full Text PDF