Publications by authors named "S Brandenburg"

The integration of proton beamlines with x-ray imaging/irradiation platforms has opened up possibilities for image-guided Bragg peak irradiations in small animals. Such irradiations allow selective targeting of normal tissue substructures and tumours. However, their small size and location pose challenges in designing experiments.

View Article and Find Full Text PDF

Introduction: Magnetic Resonance Elastography (MRE) allows the non-invasive quantification of tumor biomechanical properties . With increasing incidence of brain metastases, there is a notable absence of appropriate preclinical models to investigate their biomechanical characteristics. Therefore, the purpose of this work was to assess the biomechanical characteristics of B16 melanoma brain metastases (MBM) and compare it to murine GL261 glioblastoma (GBM) model using multifrequency MRE with tomoelastography post processing.

View Article and Find Full Text PDF

Background: Radionecrosis is a common complication in radiation oncology, while mechanisms and risk factors have yet to be fully explored. We therefore conducted a systematic review to understand the pathogenesis and identify factors that significantly affect the development.

Methods: We performed a systematic literature search based on the PRISMA guidelines using PubMed, Ovid, and Web of Science databases.

View Article and Find Full Text PDF

Background: Cardiac hypertrophy compensates for increased biomechanical stress of the heart induced by prevalent cardiovascular pathologies but can result in heart failure if left untreated. Here, we hypothesized that the membrane fusion and repair protein dysferlin is critical for the integrity of the transverse-axial tubule (TAT) network inside cardiomyocytes and contributes to the proliferation of TAT endomembranes during pressure overload-induced cardiac hypertrophy.

Methods: Stimulated emission depletion and electron microscopy were used to localize dysferlin in mouse and human cardiomyocytes.

View Article and Find Full Text PDF

Coronary heart disease (CHD) is a prevalent cardiac disease that causes over 370,000 deaths annually in the USA. In CHD, occlusion of a coronary artery causes ischemia of the cardiac muscle, which results in myocardial infarction (MI). Junctophilin-2 (JPH2) is a membrane protein that ensures efficient calcium handling and proper excitation-contraction coupling.

View Article and Find Full Text PDF