The impact of COVID-19 vaccination on clinical outcomes in solid organ transplant (SOT) recipients remains unclear. This systematic review and network meta-analysis sought to assess the efficacy and safety of COVID-19 vaccination in SOT recipients. We searched 6 databases from inception to March 1, 2024 for randomized controlled trials (RCTs) and observational studies evaluating different COVID-19 vaccination strategies in SOT recipients.
View Article and Find Full Text PDFOrganisms must either synthesize or assimilate essential organic compounds to survive. The homocysteine synthase Met15 has been considered essential for inorganic sulfur assimilation in yeast since its discovery in the 1970s. As a result, MET15 has served as a genetic marker for hundreds of experiments that play a foundational role in eukaryote genetics and systems biology.
View Article and Find Full Text PDFDe novo gene birth is the process by which new genes emerge in sequences that were previously noncoding. Over the past decade, researchers have taken advantage of the power of yeast as a model and a tool to study the evolutionary mechanisms and physiological implications of de novo gene birth. We summarize the mechanisms that have been proposed to explicate how noncoding sequences can become protein-coding genes, highlighting the discovery of pervasive translation of the yeast transcriptome and its presumed impact on evolutionary innovation.
View Article and Find Full Text PDFRecent evidence demonstrates that novel protein-coding genes can arise de novo from non-genic loci. This evolutionary innovation is thought to be facilitated by the pervasive translation of non-genic transcripts, which exposes a reservoir of variable polypeptides to natural selection. Here, we systematically characterize how these de novo emerging coding sequences impact fitness in budding yeast.
View Article and Find Full Text PDF