Publications by authors named "S Bouthors"

Background: To favor regeneration following critical bone defect, a combination of autologous bone graft and biomaterials is currently used. Major drawbacks of such techniques remain the availability of the autologous material and the second surgical site, inducing pain and morbidity.

Objective: Our aim was to investigate the biocompatibility in vitro of three dimensions hybrid biodegradable scaffolds combining osteoconductive properties of hydroxyapatite and anti-inflammatory properties of chitosan.

View Article and Find Full Text PDF

Calcium phosphates are widely used as biomaterials and strontium (Sr) is known to have the ability to modify the bone balance towards osteosynthesis. In the present study we investigated the capacity of Sr-substituted sol-gel calcium phosphate to modify the expression of genes and proteins involved in extracellular matrix synthesis by primary bone cells. We first determined the most effective concentration of strontium using human primary bone cells.

View Article and Find Full Text PDF

Hydroxyapatite (HA) is widely used as coating biomaterial for prosthesis metal parts and as bone substitute. The release of HA particles induces an inflammatory response and, if uncontrolled, could result in implant loss. At the inflamed site, the polymorphonuclear cells (PMNs) represent the earliest phagocytic cells that predominate the cellular infiltrate.

View Article and Find Full Text PDF

Hydroxyapatite (HA) is widely used as a bone substitute or coating biomaterial in bone diseases or prosthesis metal parts. The release of HA particles induces an inflammatory response and, if uncontrolled, could result in implant loss. Among the hallmarks of such inflammatory response is early recruitment of the polymorphonuclear cells (PMNs).

View Article and Find Full Text PDF

Objective: Coated medical devices have been shown to reduce catheter-related infections. We coated endotracheal tubes (ETT) with silver sulfadiazine (SSD), and tested them in a clinical study to assess the feasibility, safety, and efficacy of preventing bacterial colonization.

Design: A prospective, randomized clinical trial, phase I-II.

View Article and Find Full Text PDF