Neurofibromatosis type 1 (NF1) is a genetic disorder caused by mutation of the NF1 gene that is associated with various symptoms, including the formation of benign tumors, called neurofibromas, within nerves. Drug treatments are currently limited. The mitogen-activated protein kinase kinase (MEK) inhibitor selumetinib is used for a subset of plexiform neurofibromas (PNs) but is not always effective and can cause side effects.
View Article and Find Full Text PDFNeurofibromatosis type 1, a genetic disorder caused by pathogenic germline variations in NF1, predisposes individuals to the development of tumors, including cutaneous and plexiform neurofibromas (CNs and PNs), optic gliomas, astrocytomas, juvenile myelomonocytic leukemia, high-grade gliomas and malignant peripheral nerve sheath tumors (MPNSTs), which are chemotherapy- and radiation-resistant sarcomas with poor survival. Loss of NF1 also occurs in sporadic tumors, such as glioblastoma (GBM), melanoma, breast, ovarian and lung cancers. We performed a high-throughput screen for compounds that were synthetic lethal with NF1 loss, which identified several leads, including the small molecule Y102.
View Article and Find Full Text PDFWe address the problem of blind gain and phase calibration of a sensor array from ambient noise. The key motivation is to ease the calibration process by avoiding a complex procedure setup. We show that computing the sample covariance matrix in a diffuse field is sufficient to recover the complex gains.
View Article and Find Full Text PDFDirect links between carbonaceous chondrites and their parent bodies in the solar system are rare. The Winchcombe meteorite is the most accurately recorded carbonaceous chondrite fall. Its pre-atmospheric orbit and cosmic-ray exposure age confirm that it arrived on Earth shortly after ejection from a primitive asteroid.
View Article and Find Full Text PDFThe rising interest for three-dimensional acoustic imaging requires the improvement of the numerical models describing the propagation between a radiating body and a microphone array. The commonly used free field transfer functions boil down to assume a full acoustic transparency of the radiating object, which, in some cases, may lead to misleading outcomes for their characterization. Among other approaches, equivalent sources methods (ESM) emerged as a convenient and powerful approach to simulate scattered sound fields.
View Article and Find Full Text PDF