Publications by authors named "S Bossi"

Objectives: This study introduces EMPATIC (Electro-Modulation of PAncreaTic Islet Cells), a miniaturized intraneural device designed for transversal insertion into small nerves with a mean diameter of 400 μm. EMPATIC aims to modulate glucose tolerance through intraneural vagus nerve stimulation (VNS) in rats.

Materials And Methods: EMPATIC design was optimized to fit into the cervical vagus nerve of rats and was developd through thin film microtechnologies.

View Article and Find Full Text PDF
Article Synopsis
  • Astrocytes play crucial and underestimated roles in modulating neuronal circuits, particularly in the striatum, where they regulate dopamine transmission and interact closely with cholinergic interneurons (ChIs).
  • The study reveals that striatal astrocytes rapidly excite ChIs and influence dopamine release through nicotinic acetylcholine receptors, operating on very fast timescales.
  • A unique anatomical configuration is observed, where ChI somata are closely located to astrocyte somata, allowing for a dynamic interaction that regulates ChI excitability and extracellular calcium, thus impacting overall striatal circuit activity and dopamine signaling.
View Article and Find Full Text PDF

The synapses between parallel fibers and Purkinje cells play a pivotal role in cerebellar function. They are intricately governed by a variety of presynaptic receptors, notably by type 4 metabotropic glutamate (mGlu4) receptors and type 1 adenosine (A1) receptors both of which curtail glutamate release upon activation. Despite their pivotal role in regulating synaptic transmission within the cerebellar cortex, functional interactions between mGlu4 and A1 receptors have remained relatively unexplored.

View Article and Find Full Text PDF

The Topoisomerase 3B (Top3b) - Tudor domain containing 3 (Tdrd3) protein complex is the only dual-activity topoisomerase complex that can alter both DNA and RNA topology in animals. TOP3B mutations in humans are associated with schizophrenia, autism and cognitive disorders; and Top3b-null mice exhibit several phenotypes observed in animal models of psychiatric and cognitive disorders, including impaired cognitive and emotional behaviors, aberrant neurogenesis and synaptic plasticity, and transcriptional defects. Similarly, human TDRD3 genomic variants have been associated with schizophrenia, verbal short-term memory and educational attainment.

View Article and Find Full Text PDF

Fast synaptic neurotransmission in the vertebrate central nervous system relies primarily on ionotropic glutamate receptors (iGluRs), which drive neuronal excitation, and type A γ-aminobutyric acid receptors (GABARs), which are responsible for neuronal inhibition. However, the GluD1 receptor, an iGluR family member, is present at both excitatory and inhibitory synapses. Whether and how GluD1 activation may affect inhibitory neurotransmission is unknown.

View Article and Find Full Text PDF