J Synchrotron Radiat
September 2019
Resonant inelastic X-ray scattering (RIXS) is an extremely valuable tool for the study of elementary, including magnetic, excitations in matter. The latest developments of this technique have mostly been aimed at improving the energy resolution and performing polarization analysis of the scattered radiation, with a great impact on the interpretation and applicability of RIXS. Instead, this article focuses on the sample environment and presents a setup for high-pressure low-temperature RIXS measurements of low-energy excitations.
View Article and Find Full Text PDFX-ray magnetic critical scattering measurements and specific heat measurements were performed on the perovskite iridate [Formula: see text]. We find that the magnetic interactions close to the Néel temperature [Formula: see text] are three-dimensional. This contrasts with previous studies which suggest two-dimensional behaviour like SrIrO.
View Article and Find Full Text PDFThe resonant x-ray scattering (magnetic elastic, RXMS, and inelastic, RIXS) of Ir4+ at the L2,3 edges relevant to spin-orbit Mott insulators A(n+1)Ir(n)O(3n+1) (A = Sr, Ba, etc.) are calculated using a single-ion model which treats the spin-orbit and tetragonal crystal-field terms on an equal footing. Both RXMS and RIXS in the spin-flip channel are found to display a nontrivial dependence on the direction of the magnetic moment, μ.
View Article and Find Full Text PDFSr2IrO4 is a prototype of the class of Mott insulators in the strong spin-orbit interaction (SOI) limit described by a Jeff = 1/2 ground state. In Sr2IrO4, the strong SOI is predicted to manifest itself in the locking of the canting of the magnetic moments to the correlated rotation by 11.8(1)° of the oxygen octahedra that characterizes its distorted layered perovskite structure.
View Article and Find Full Text PDFThe magnetic structure and electronic ground state of the layered perovskite Ba(2)IrO(4) have been investigated using x-ray resonant magnetic scattering. Our results are compared with those for Sr(2)IrO(4), for which we provide supplementary data on its magnetic structure. We find that the dominant, long-range antiferromagnetic order is remarkably similar in the two compounds and that the electronic ground state in Ba(2)IrO(4), deduced from an investigation of the x-ray resonant magnetic scattering L(3)/L(2) intensity ratio, is consistent with a J(eff)=1/2 description.
View Article and Find Full Text PDF