Publications by authors named "S Bonnevay"

Background: The FLURESP project is a public health project funded by the European Commission with the objective to design a methodological approach in order to compare the cost-effectiveness of existing public health measures against human influenza pandemics in four target countries: France, Italy, Poland and Romania. This article presents the results relevant to the French health system using a data set specifically collected for this purpose.

Methods: Eighteen public health interventions against human influenza pandemics were selected.

View Article and Find Full Text PDF

In the PREVENIR-5 study, artificial neural networks (NN) were applied to a large sample of patients with recent first acute coronary syndrome (ACS) to identify determinants of persistence of evidence-based cardiovascular medications (EBCM: antithrombotic + beta-blocker + statin + angiotensin converting enzyme inhibitor-ACEI and/or angiotensin-II receptor blocker-ARB). From October 2006 to April 2007, 1,811 general practitioners recruited 4,850 patients with a mean time of ACS occurrence of 24 months. Patient profile for EBCM persistence was determined using automatic rule generation from NN.

View Article and Find Full Text PDF

This paper presents an analysis of censored survival data for breast cancer specific mortality and disease-free survival. There are three stages to the process, namely time-to-event modelling, risk stratification by predicted outcome and model interpretation using rule extraction. Model selection was carried out using the benchmark linear model, Cox regression but risk staging was derived with Cox regression and with Partial Logistic Regression Artificial Neural Networks regularised with Automatic Relevance Determination (PLANN-ARD).

View Article and Find Full Text PDF

This paper presents an exploratory fixed time study to identify the most significant covariates as a precursor to a longitudinal study of specific mortality, disease free survival and disease recurrences. The data comprise consecutive patients diagnosed with primary breast cancer and entered into the study from 1996 at a single French clinical center, Centre Léon Bérard, based in Lyon, where they received standard treatment. The methodology was to compare and contrast multi-layer perceptron neural networks (NN) with logistic regression (LR), to identify key covariates and their interactions and to compare the selected variables with those routinely used in clinical severity of illness indices for breast cancer.

View Article and Find Full Text PDF