In the last few years, many efforts have been devoted to the recovery and valorization of olive oil by-products because of their potentially high biological value. The olive mill wastewater (OMWW), a dark-green brown colored liquid that mainly consists of fruit vegetation water, is particularly exploited in this regard for its great content in phenolic compounds with strong antioxidant properties. In our previous work, we produced different OMWW fractions enriched in hydroxytyrosol- and hydroxytyrosol/oleuropein (i.
View Article and Find Full Text PDFMismatch between adjacent atomic layers in low-dimensional materials, generating moiré patterns, has recently emerged as a suitable method to tune electronic properties by inducing strong electron correlations and generating novel phenomena. Beyond graphene, van der Waals structures such as three-dimensional (3D) topological insulators (TIs) appear as ideal candidates for the study of these phenomena due to the weak coupling between layers. Here we discover and investigate the origin of 1D moiré stripes on the surface of BiSe TI thin films and nanobelts.
View Article and Find Full Text PDFDespite the promising properties, the problem of cubic silicon carbide (3C-SiC) heteroepitaxy on silicon has not yet been resolved and its use in microelectronics is limited by the presence of extensive defects. In this paper, we used microphotoluminescence (μ-PL), molten KOH etching, and high-resolution scanning transmission electron microscopy (HRSTEM) to investigate the effect of nitrogen doping on the distribution of stacking faults (SFs) and assess how increasing dosages of nitrogen during chemical vapor deposition (CVD) growth inhibits the development of SFs. An innovative angle-resolved SEM observation approach of molten KOH-etched samples resulted in detailed statistics on the density of the different types of defects as a function of the growth thickness of 3C-SiC free-standing samples with varied levels of nitrogen doping.
View Article and Find Full Text PDFThis work provides a comprehensive investigation of nitrogen and aluminum doping and its consequences for the physical properties of 3C-SiC. Free-standing 3C-SiC heteroepitaxial layers, intentionally doped with nitrogen or aluminum, were grown on Si (100) substrate with different 4° off-axis in a horizontal hot-wall chemical vapor deposition (CVD) reactor. The Si substrate was melted inside the CVD chamber, followed by the growth process.
View Article and Find Full Text PDFNowadays, gold nanoparticles Au nanoparticles (AuNPs) capture great interest due to their chemical stability, optical properties and biocompatibility. The success of technologies based on the use of AuNPs implies the development of simple synthesis methods allowing, also, the fine control over their properties (shape, sizes, structure). Here, we present the AuNPs fabrication by nanosecond pulsed laser ablation in citrate-solution, that has the advantage of being a simple, economic and eco-sustainable method to fabricate colloidal solutions of NPs.
View Article and Find Full Text PDF