sec-Butylpropylacetamide (SPD) is the amide derivative of valproic acid (VPA). SPD possess a wide-spectrum anticonvulsant profile better than that of VPA and blocks status epilepticus (SE) induced by pilocarpine and organophosphates. The activity of SPD on SE is better than that of benzodiazepines (BZDs) in terms of the ability to block SE when given 20-60 min after the beginning of a seizure.
View Article and Find Full Text PDFBackground: Cytocbrome P450 (CYP) 2C9 polymorphism affects the warfarin dosage requirement in stable outpatients. However, it is not known whether the CYP2C9 genotype contributes to the variability in warfarin dosage in the presence of drug-disease and drug-drug interactions.
Objective: The aim of this study was to examine the effects of CYP2C9 genetic polymorphism on warfarin dosage requirements in patients with severe comorbid conditions and those treated with medications that potentially interact with warfarin.
Antiepileptic drugs (AEDs) are often utilized in the treatment of neuropathic pain. The major AED valproic acid (VPA) is of particular interest as it is thought to engage a variety of different neural mechanisms simultaneously. However, the clinical use of VPA is limited by two rare but life-threatening side effects: teratogenicity and hepatotoxicity.
View Article and Find Full Text PDF1. Propylisopropyl acetamide (PID) is a new chiral amide derivative of valproic acid. The purpose of this study was to evaluate the anticonvulsant activity of PID in rodent models of partial, secondarily generalized and sound-induced generalized seizures which focus on different methods of seizure induction, both acute stimuli, and following short-term plastic changes as a result of kindling, and to assess enantioselectivity and enantiomer-enantiomer interactions in the pharmacokinetics and pharmacodynamics of racemic PID and its pure enantiomers in rodents.
View Article and Find Full Text PDFThe purpose of this study was to evaluate the anticonvulsant activity and pharmacokinetics (PK) of a novel chiral CNS-active 2-hydroxypropyl valpromide (HP-VPD), a derivative of valproic acid (VPA). The individual enantiomers, R, S, and racemic (R,S)-HP-VPD were synthesized and evaluated for their pharmacokinetics and pharmacodynamics in a stereoselective manner. A stereoselective gas chromatography (GC) assay for simultaneous quantification of HP-VPD enantiomers in plasma and urine was developed and used to investigate the pharmacokinetics of HP-VPD in dogs.
View Article and Find Full Text PDF