A conserved pathway, called Rim or Pal, transduces the ambient pH signal in ascomycetous yeasts and fungi, respectively. This pathway requires most of the components of the endosomal sorting complex required for transport (ESCRT) pathway. In the yeast Yarrowia lipolytica, a functional analysis of the ESCRT-I subunit Vps23 was carried out by in-frame deletions of each of the conserved domains to test whether Vps23 functions in the Rim and ESCRT pathways could be separated.
View Article and Find Full Text PDFA conserved ambient pH signal transduction pathway has been evidenced in both ascomycetous yeasts and filamentous fungi, called the Rim or Pal pathway, respectively. However, closely related PalC orthologues are found only in Yarrowia lipolytica and in filamentous fungi, where the Rim9p/PalI factor has a much longer C-terminal tail than in other yeasts. We show here that, like Aspergillus nidulans palI mutants, a Ylrim9Delta mutant has a less extreme phenotype than other mutants of the pathway, whereas rim9 mutants in Saccharomyces cerevisiae and Candida albicans reportedly exhibit a tight Rim phenotype.
View Article and Find Full Text PDFAmbient pH signaling involves a cascade of conserved Rim or Pal products in ascomycetous yeasts or filamentous fungi, respectively. Recent evidences in the fungi Aspergillus nidulans, Saccharomyces cerevisiae, Yarrowia lipolytica, and Candida albicans suggested that components of endosomal sorting complexes required for transport (ESCRT) involved in endocytic trafficking were needed for signal transduction along the Rim pathway. In this study, we confirm these findings with C.
View Article and Find Full Text PDFAmbient pH signalling involves a cascade of conserved Rim or Pal products in ascomycetous yeasts or filamentous fungi, respectively. Insertional mutagenesis in the yeast Yarrowia lipolytica identified two components of the endosome-associated ESCRT-I complex involved in multivesicular body (MVB) vesicle formation, YlVps28p and YlVps23p. They were shown to be required at alkaline pH, like Rim factors, for transcriptional activation of alkaline-induced genes and repression of acid-induced genes.
View Article and Find Full Text PDFDepending on the pH of the growth medium, the yeast Yarrowia lipolytica secretes an acidic protease or an alkaline protease, the synthesis of which is also controlled by carbon, nitrogen, and sulfur availability, as well as by the presence of extracellular proteins. Previous results have indicated that the alkaline protease response to pH was dependent on YlRim101p, YlRim8p/YlPalF, and YlRim21p/YlPalH, three components of a conserved pH signaling pathway initially described in Aspergillus nidulans. To identify other partners of this response pathway, as well as pH-independent regulators of proteases, we searched for mutants that affect the expression of either or both acidic and alkaline proteases, using a YlmTn1-transposed genomic library.
View Article and Find Full Text PDF