Publications by authors named "S Bjelland"

Introduction: The demand for transplanted organs outweighs the supply and intensifies the need to improve care for donor families. Studies have shown inadequate care by hospital staff can increase posttraumatic stress disorder and complicated grief in these families but putting solutions into practice remains slow.

Objective: This systematic review identified factors that relieve or contribute to distress for deceased organ donor families in the time since the decision to donate.

View Article and Find Full Text PDF

Uracil arises in cellular DNA by cytosine (C) deamination and erroneous replicative incorporation of deoxyuridine monophosphate opposite adenine. The former generates C → thymine transition mutations if uracil is not removed by uracil-DNA glycosylase (UDG) and replaced by C by the base excision repair (BER) pathway. The primary human UDG is hUNG.

View Article and Find Full Text PDF

DNA polymerase III mis-insertion may, where not corrected by its 3'→ 5' exonuclease or the mismatch repair (MMR) function, result in all possible non-cognate base pairs in DNA generating base substitutions. The most thermodynamically unstable base pair, the cytosine (C)⋅C mismatch, destabilizes adjacent base pairs, is resistant to correction by MMR in , and its repair mechanism remains elusive. We present here evidence that C⋅C mismatch can be processed by base excision repair initiated by the formamidopyrimidine-DNA glycosylase (Fpg) protein.

View Article and Find Full Text PDF

The cellular methyl donor -adenosylmethionine (SAM) and other endo/exogenous agents methylate DNA bases non-enzymatically into products interfering with replication and transcription. An important product is 3-methyladenine (mA), which in is removed by mA-DNA glycosylase I (Tag) and II (AlkA). The gene is constitutively expressed, while is induced by sub-lethal concentrations of methylating agents.

View Article and Find Full Text PDF

Uracil arises in DNA by hydrolytic deamination of cytosine (C) and by erroneous incorporation of deoxyuridine monophosphate opposite adenine, where the former event is devastating by generation of C → thymine transitions. The base excision repair (BER) pathway replaces uracil by the correct base. In human cells two uracil-DNA glycosylases (UDGs) initiate BER by excising uracil from DNA; one is hSMUG1 (human single-strand-selective mono-functional UDG).

View Article and Find Full Text PDF