Recent computational advancements in the simulation of biochemical processes allow investigating the mechanisms involved in protein regulation with realistic physics-based models, at an atomistic level of resolution. These techniques allowed us to design a drug discovery approach, named Pharmacological Protein Inactivation by Folding Intermediate Targeting (PPI-FIT), based on the rationale of negatively regulating protein levels by targeting folding intermediates. Here, PPI-FIT was tested for the first time on the cellular prion protein (PrP), a cell surface glycoprotein playing a key role in fatal and transmissible neurodegenerative pathologies known as prion diseases.
View Article and Find Full Text PDFThe degradation profile and the cytotoxicity of the degradation products of a silk fibroin (SF)-based nerve conduit (SilkBridge), with a complex three-layered wall architecture comprising both native and regenerated (electrospun) fibers, are reported. The bacterial protease type XIV from was used as a hydrolytic agent at three different enzyme/substrate ratios (1:8, 1:80, and 1:800 w/w) to account for the different susceptibility to degradation of the native and regenerated components. The incubation time was extended up to 91 days.
View Article and Find Full Text PDFPrions are misfolded proteins involved in neurodegenerative diseases of high interest in veterinary and public health. In this work, we report the chemical space exploration around the anti-prion compound BB 0300674 in order to gain an understanding of its Structure Activity Relationships (SARs). A series of 43 novel analogues, based on four different chemical clusters, were synthetized and tested against PrP and mutant PrP toxicity assays.
View Article and Find Full Text PDFBMC Musculoskelet Disord
October 2020
Background: A proper restoration of hip biomechanics is fundamental to achieve satisfactory outcomes after total hip arthroplasty (THA). A global hip offset (GO) postoperatively reduction of more than 5 mm was known to impair hip functionality after THA. This study aimed to verify the restoration of the GO radiographic parameter after primary THA by the use of a cementless femoral stem available in three different offset options without length changing.
View Article and Find Full Text PDF