Publications by authors named "S Bernhard"

Testing for PD-L1 expression by immunohistochemistry (IHC) is used to predict immune checkpoint blockade (ICB) benefit but has performed inconsistently in urothelial cancer (UC) clinical trials. Different approaches are used for PD-L1 IHC. We analyzed paired PD-L1 IHC data on UC samples using the SP142 and 22C3 assays from the phase 3 IMvigor130 trial and found discordant findings summarized by four phenotypes: PD-L1 positive by both assays (PD-L1 double positive; PD-L1DP), PD-L1 positive by the SP142 assay only (SP142 single positive; SP142SP), PD-L1 positive by the 22C3 assay only (22C3 single positive; 22C3SP), and PD-L1 negative by both assays double negative (PD-L1 double negative; PD-L1DN).

View Article and Find Full Text PDF

Background And Aims: Kalanchoe is a diverse genus in the Crassulaceae, with centres of diversity in Madagascar and sub-Saharan Africa. The genus is known for its popularity in horticulture, its use as a model system for research on CAM photosynthesis and vegetative reproduction, its high invasive potential, and its use in traditional medicine. The genus-rank circumscription and infrageneric classification of Kalanchoe have been the subject of debate for centuries, especially regarding the status and rank of what is now treated as K.

View Article and Find Full Text PDF
Article Synopsis
  • PIK3CA gene variants are linked to vascular malformations, and this study aimed to analyze their phenotypes, locations within the gene, and frequency in patients with these conditions.
  • Data was collected from 558 patients with vascular malformations between 2008 and 2022, with genetic testing performed on biopsy samples starting in 2020, leading to 89 patients being included by June 2022.
  • The research found 25 PIK3CA variants, predominantly in nonsyndromic (simple/combined) vascular malformations, with notable hotspot and non-hotspot variants and significant differences in variant frequency between syndromic and nonsyndromic cases, highlighting the genetic diversity underlying these conditions.
View Article and Find Full Text PDF

Hydrogels are three-dimensional, highly tunable material systems that can match the properties of extracellular matrices. In addition to being widely used to grow and modulate cell behavior, hydrogels can be made conductive to further modulate electrically active cells, such as neurons, and even incorporated into multielectrode arrays to interface with tissues. To enable conductive hydrogels, graphene flakes can be mechanically suspended into a hydrogel precursor.

View Article and Find Full Text PDF

The mu opioid receptor (μOR) is a target for clinically used analgesics. However, adverse effects, such as respiratory depression and physical dependence, necessitate the development of alternative treatments. Recently we reported a novel strategy to design functionally selective opioids by targeting the sodium binding allosteric site in μOR with a supraspinally active analgesic named .

View Article and Find Full Text PDF