Publications by authors named "S Bergaya"

Background: The long isoform of the Wnk1 (with-no-lysine [K] kinase 1) is a ubiquitous serine/threonine kinase, but its role in vascular smooth muscle cells (VSMCs) pathophysiology remains unknown.

Methods: AngII (angiotensin II) was infused in to induce experimental aortic aneurysm. Mice carrying an allele were cross-bred with mice carrying a floxed allele to specifically investigate the functional role of Wnk1 in VSMCs.

View Article and Find Full Text PDF

Atherosclerosis evolves through dysregulated lipid metabolism interwoven with exaggerated inflammation. Previous work implicating the receptor for advanced glycation end products (RAGE) in atherosclerosis prompted us to explore if Diaphanous 1 (DIAPH1), which binds to the RAGE cytoplasmic domain and is important for RAGE signaling, contributes to these processes. We intercrossed atherosclerosis-prone Ldlr mice with mice devoid of Diaph1 and fed them Western diet for 16 weeks.

View Article and Find Full Text PDF

The etiology of aortic aneurysms is poorly understood, but it is associated with atherosclerosis, hypercholesterolemia, and abnormal transforming growth factor β (TGF-β) signaling in smooth muscle. Here, we investigated the interactions between these different factors in aortic aneurysm development and identified a key role for smooth muscle cell (SMC) reprogramming into a mesenchymal stem cell (MSC)-like state. SMC-specific ablation of TGF-β signaling in Apoe mice on a hypercholesterolemic diet led to development of aortic aneurysms exhibiting all the features of human disease, which was associated with transdifferentiation of a subset of contractile SMCs into an MSC-like intermediate state that generated osteoblasts, chondrocytes, adipocytes, and macrophages.

View Article and Find Full Text PDF

Atherosclerosis, which underlies life-threatening cardiovascular disorders such as myocardial infarction and stroke, is initiated by passage of low-density lipoprotein (LDL) cholesterol into the artery wall and its engulfment by macrophages, which leads to foam cell formation and lesion development. It is unclear how circulating LDL enters the artery wall to instigate atherosclerosis. Here we show in mice that scavenger receptor class B type 1 (SR-B1) in endothelial cells mediates the delivery of LDL into arteries and its accumulation by artery wall macrophages, thereby promoting atherosclerosis.

View Article and Find Full Text PDF

Background & Aims: Hepatitis C virus (HCV) is a leading cause of chronic liver diseases and the most common indication for liver transplantation in the United States. HCV particles in the blood of infected patients are characterized by heterogeneous buoyant densities, likely owing to HCV association with lipoproteins. However, clinical isolates are not infectious in vitro and the relative infectivity of the particles with respect to their buoyant density therefore cannot be determined, pointing to the need for better in vivo model systems.

View Article and Find Full Text PDF