Publications by authors named "S Bellusci"

Idiopathic pulmonary fibrosis (IPF) is characterized by accumulation of myofibroblasts (MYFs) and extracellular matrix components, which leads to severe distortion and scarring of the gas exchange units of the lung, the alveoli, and ultimately respiratory failure. Fibrosis-associated MYFs are therefore widely regarded as the culprits that compromise the architectural makeup of the lung in fibrotic disease. During the past decade, the cellular source of MYFs has been intensely investigated.

View Article and Find Full Text PDF
Article Synopsis
  • Fibrosis, especially idiopathic pulmonary fibrosis (IPF), is linked to abnormal healing processes in the lungs that can lead to organ failure, with no current cure.
  • The study investigates activated myofibroblasts (aMYFs), their different subtypes, and their roles in lung repair and damage using genetic and transcriptomic analysis in mice, as well as human data.
  • Findings reveal that aMYFs can be categorized into four distinct groups, with a specific subset linked to both the progression and resolution of fibrosis, suggesting new potential treatment targets for managing IPF.
View Article and Find Full Text PDF

Phenotype distortion of lung resident mesenchymal stem cells (MSC) in preterm infants is a hallmark event in the pathogenesis of bronchopulmonary dysplasia (BPD). Here, we evaluated the impact of cyclic mechanical stretch (CMS) and hyperoxia (HOX). The negative action of HOX on proliferation and cell death was more pronounced at 80% than at 40%.

View Article and Find Full Text PDF

Oxygen toxicity constitutes a key contributor to bronchopulmonary dysplasia (BPD). Critical step in the pathogenesis of BPD is the inflammatory response in the immature lung with the release of pro-inflammatory cytokines and the influx of innate immune cells. Identification of efficient therapies to alleviate the inflammatory response remains an unmet research priority.

View Article and Find Full Text PDF