Publications by authors named "S Belhadj Hassine"

Research on new ingredients that can prevent excessive melanin production in the skin while considering efficacy, safety but also environmental impact is of great importance to significantly improve the profile of existing actives on the market and avoid undesirable side effects. Here, the discovery of an innovative technology for the management of hyperpigmentation is described. High-throughput screening tests on a wide chemical diversity of molecules and in silico predictive methodologies were essential to design an original thiopyridinone backbone and select 2-mercaptonicotinoyl glycine (2-MNG) as exhibiting the most favorable balance between the impact on water footprint, skin penetration potential and performance.

View Article and Find Full Text PDF

Currently, novel technologies are highly prerequisite as an outstanding approach in the field of photocatalytic water splitting (PWS). Previous research has shown that copolymerization technology could improve the photocatalytic performance of pristine carbon nitride (CN) more efficiently. As this technology further allows the charge carrier recombination constraints, due to novel monomer-incorporated highly abundant surface-active sites of metals in polymeric carbon nitride-based heterojunction.

View Article and Find Full Text PDF

Microplastics (MPs) are emerging pollutants of global concern due to their pervasiveness, high sorption ability for persistent organic pollutants (POPs) and direct and indirect toxicity to marine organisms, ecosystems, as well as humans. As one of the major coastal interfaces, beaches are considered among the most affected ecosystems by MPs pollution. The morphological characteristics of MPs (pellets and fragments) collected from four beaches along the Tunisian coast and sorbed POPs, including polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs), were investigated in this study.

View Article and Find Full Text PDF

Hydromagnetic flow and heat transport have sustainable importance in conventional system design along with high-performance thermal equipment and geothermal energy structures. The current computational study investigates the energy transport and entropy production due to the pressure-driven flow of non-Newtonian fluid filled inside the wedge-shaped channel. The nonlinear radiation flux and uniform magnetic field are incorporated into the flow analysis.

View Article and Find Full Text PDF

Unlike artificial nanosystems, biological systems are ideally engineered to respond to their environment. As such, natural molecular buffers ensure precise and quantitative delivery of specific molecules through self-regulated mechanisms based on Le Chatelier's principle. Here, we apply this principle to design self-regulated nucleic acid molecular buffers for the chemotherapeutic drug doxorubicin and the antimalarial agent quinine.

View Article and Find Full Text PDF