The population-averaged contact maps generated by the chromosome conformation capture technique provide important information about the average frequency of contact between pairs of chromatin loci as a function of the genetic distance between them. However, these datasets do not tell us anything about the joint statistics of simultaneous contacts between genomic loci in individual cells. This kind of statistical information can be extracted using the single-cell Hi-C method, which is capable of detecting a large fraction of simultaneous contacts within a single cell, as well as through modern methods of fluorescent labeling and super-resolution imaging.
View Article and Find Full Text PDFOptimization of the mean completion time of random processes by restart is a subject of active theoretical research in statistical physics and has long found practical application in computer science. Meanwhile, one of the key issues remains largely unsolved: how to construct a restart strategy for a process whose detailed statistics are unknown to ensure that the expected completion time will reduce? Addressing this query here we propose several constructive criteria for the effectiveness of various protocols of noninstantaneous restart in the mean completion time problem and in the success probability problem. Being expressed in terms of a small number of easily estimated statistical characteristics of the original process (MAD, median completion time, low-order statistical moments of completion time), these criteria allow informed restart decision based on partial information.
View Article and Find Full Text PDFChromosomes are exceedingly long topologically-constrained polymers compacted in a cell nucleus. We recently suggested that chromosomes are organized into loops by an active process of loop extrusion. Yet loops remain elusive to direct observations in living cells; detection and characterization of myriads of such loops is a major challenge.
View Article and Find Full Text PDFActive loop extrusion-the process of formation of dynamically growing chromatin loops due to the motor activity of DNA-binding protein complexes-is a firmly established mechanism responsible for chromatin spatial organization at different stages of a cell cycle in eukaryotes and bacteria. The theoretical insight into the effect of loop extrusion on the experimentally measured statistics of chromatin conformation can be gained with an appropriately chosen polymer model. Here, we consider the simplest analytically solvable model of an interphase chromosome, which is treated as an ideal chain with disorder of sufficiently sparse random loops whose conformations are sampled from the equilibrium ensemble.
View Article and Find Full Text PDFAs has long been known to computer scientists, the performance of probabilistic algorithms characterized by relatively large runtime fluctuations can be improved by applying a restart, i.e., episodic interruption of a randomized computational procedure followed by initialization of its new statistically independent realization.
View Article and Find Full Text PDF