A simple and straightforward technique is presented as a novel temporally controllable front-end for nanosecond very-high energy laser systems. It is based on an original utilization of a semiconductor optical amplifier (SOA) used as an intensity modulator. The essential characteristics of the component are analyzed in order to evaluate potential limitations.
View Article and Find Full Text PDFWe report on the optimization of a BremsStrahlung Cannon (BSC) design for the investigation of laser-driven fast electron populations in a shock ignition relevant experimental campaign at the Laser Megajoule-PETawatt Aquitaine Laser facility. In this regime with laser intensities of 10 W/cm-10 W/cm, fast electrons with energies ≤100 keV are expected to be generated through Stimulated Raman Scattering (SRS) and Two Plasmon Decay (TPD) instabilities. The main purpose of the BSC in our experiment is to identify the contribution to x-ray emission from bremsstrahlung of fast electrons originating from SRS and TPD, with expected temperatures of 40 keV and 95 keV, respectively.
View Article and Find Full Text PDFRev Sci Instrum
November 2018
High-resolution, high-sensitivity X-ray imaging is a real challenge in high-energy density plasma experiments. We present an improved design of the Fresnel ultra high-resolution imager instrument. Using an Ultra-High-Intensity (UHI) laser to generate hot and dense plasma in a small volume of an Al-Ti mixed target provides simultaneous imaging of both Al and Ti X-ray emission.
View Article and Find Full Text PDFMultimegabar laser-driven shock waves are unique tools for studying matter under extreme conditions. Accurate characterization of shocked matter is for instance necessary for measurements of equation of state data or opacities. This paper reports experiments performed at the LULI facility on the diagnosis of shock waves, using x-ray-absorption radiography.
View Article and Find Full Text PDFCollimated transport of ultrahigh intensity electron current was observed in cold and in laser-shocked vitreous carbon, in agreement with simulation predictions. The fast electron beams were created by coupling high-intensity and high-contrast laser pulses onto copper-coated cones drilled into the carbon samples. The guiding mechanism-observed only for times before the shock breakout at the inner cone tip-is due to self-generated resistive magnetic fields of ∼0.
View Article and Find Full Text PDF