Advanced materials are materials that have been engineered to exhibit novel or enhanced properties that confer superior performance when compared to conventional materials. Here, we evaluated the impact of TiC MXenes, a two-dimensional (2D) material, on the adverse effects caused by polycyclic aromatic hydrocarbons. To this end, we studied benzo[a]pyrene denoted here as B[a]P as a model compound.
View Article and Find Full Text PDFAims/hypothesis: Regulatory factor X 6 (RFX6) is crucial for pancreatic endocrine development and differentiation. The RFX6 variant p.His293LeufsTer7 is significantly enriched in the Finnish population, with almost 1:250 individuals as a carrier.
View Article and Find Full Text PDFProtein function can be modulated by phase transitions in their material properties, which can range from liquid- to solid-like; yet, the mechanisms that drive these transitions and whether they are important for physiology are still unknown. In the model plant Arabidopsis, we show that developmental robustness is reinforced by phase transitions of the plasma membrane-bound lipid-binding protein SEC14-like. Using imaging, genetics, and in vitro reconstitution experiments, we show that SEC14-like undergoes liquid-like phase separation in the root stem cells.
View Article and Find Full Text PDFDefects in insulin processing and granule maturation are linked to pancreatic beta-cell failure during type 2 diabetes (T2D). Phosphatidylinositol transfer protein alpha (PITPNA) stimulates activity of phosphatidylinositol (PtdIns) 4-OH kinase to produce sufficient PtdIns-4-phosphate (PtdIns-4-P) in the trans-Golgi network to promote insulin granule maturation. PITPNA in beta-cells of T2D human subjects is markedly reduced suggesting its depletion accompanies beta-cell dysfunction.
View Article and Find Full Text PDF