Publications by authors named "S Barbot"

Constitutive models of fault friction form the basis of physics-based simulations of seismic activity. A generally accepted framework for the slip-rate and state dependence of friction involves a thermally activated process, whereby the probability of slip along microasperities adheres to an Arrhenius law. This model, which has become widely adopted among experimentalists and theoreticians, predicts a continuous increase of the direct effect with absolute temperature, but is it observed experimentally? Leveraging comprehensive laboratory data across diverse hydrothermal, barometric, and lithological conditions, we demonstrate that, contrary to the classical view, the direct effect for a given deformation mechanism remains largely temperature-independent.

View Article and Find Full Text PDF

The relative motion of tectonic plates is accommodated at boundary faults through slow and fast ruptures that encompass a wide range of source properties. Near the Parkfield segment of the San Andreas fault, low-frequency earthquakes and slow-slip events take place deeper than most seismicity, at temperature conditions typically associated with stable sliding. However, laboratory experiments indicate that the strength of granitic gouge decreases with increasing temperature above 350°C, providing a possible mechanism for weakening if temperature is to vary dynamically.

View Article and Find Full Text PDF

Although the surface deformation of tectonic plate boundaries is well determined by geological and geodetic measurements, the pattern of flow below the lithosphere remains poorly constrained. We use the crustal velocity field of the Plate Boundary Observatory to illuminate the distribution of horizontal flow beneath the California margin. At lower-crustal and upper-mantle depths, the boundary between the Pacific and North American plates is off-centered from the San Andreas fault, concentrated in a region that encompasses the trace of nearby active faults.

View Article and Find Full Text PDF

Deformation associated with plate convergence at subduction zones is accommodated by a complex system involving fault slip and viscoelastic flow. These processes have proven difficult to disentangle. The 2010 8.

View Article and Find Full Text PDF

Modeling of postseismic deformation following great earthquakes has revealed the viscous structure of the mantle and the frictional properties of the fault interface. However, for giant megathrust events, viscoelastic flow and afterslip mechanically interplay with each other during the postseismic period. We explore the role of afterslip and viscoelastic relaxation and their interaction in the aftermath of the 2011 (moment magnitude) 9.

View Article and Find Full Text PDF