Publications by authors named "S Balshine"

Behavioural analysis has been attracting significant attention as a broad indicator of sub-lethal toxicity and has secured a place as an important subdiscipline in ecotoxicology. Among the most notable characteristics of behavioural research, compared to other established approaches in sub-lethal ecotoxicology (e.g.

View Article and Find Full Text PDF

Social interactions can sometimes be a source of stress, but social companions can also ameliorate and buffer against stress. Stress and metabolism are closely linked, but the degree to which social companions modulate metabolic responses during stressful situations-and whether such effects differ depending on social rank-is poorly understood. To investigate this question, we studied , a group-living cichlid fish endemic to Lake Tanganyika and measured the metabolic responses of dominant and subordinate individuals when they were either visible or concealed from one another.

View Article and Find Full Text PDF

Pollution from regularly used substances such as pharmaceuticals, cleaning agents, and even food and beverages is an increasing problem in the environment. Caffeine, a commonly ingested stimulant, is one such contaminant that has been detected in aquatic environments worldwide. Yet, little is known about how ecologically relevant concentrations of caffeine influence the morphology, behaviour, and physiology of exposed organisms.

View Article and Find Full Text PDF

Marine noise is recognised as a growing threat that can induce maladaptive behavioural changes in many aquatic animals, including fishes. The plainfin midshipman is a soniferous fish with a prolonged breeding period, during which males produce tonal hums that attract females, and grunts and growls during agonistic interactions. In this study, we used acoustic recordings to assess the effects of boat noise on the presence, peak frequencies, and durations of plainfin midshipman calls in the wild.

View Article and Find Full Text PDF

The neuropeptides arginine vasopressin (AVP) and oxytocin (OXT) are key regulators of social behaviour across vertebrates. However, much of our understanding of how these neuropeptide systems interact with social behaviour is centred around laboratory studies which fail to capture the social and physiological challenges of living in the wild. To evaluate relationships between these neuropeptide systems and social behaviour in the wild, we studied social groups of the cichlid fish Neolamprologus pulcher in Lake Tanganyika, Africa.

View Article and Find Full Text PDF